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Abstract

Demanding a consistent quantum field theory description of spin- 1
2 particles

near a circular Fermi surface in 2d leads to a unique fermionic theory with
relevant quartic interactions which has an emergent Lorentz symmetry and
automatically has an Sp(4) = SO(5) internal symmetry. The interacting
theory has a low-energy interacting fixed point and is thus a non-Landau/Fermi
liquid. Anti-ferromagnetic (AF) and superconducting (SC) order parameters
are bilinears in the fields and form the five-dimensional vector representation
of SO(5). An AF phase occurs at low doping which terminates in a first-
order transition. We incorporate momentum-dependent scattering of Cooper
pairs near the Fermi surface to 1-loop and derive a new kind of SC gap
equation beyond mean field with a d-wave gap solution. Taking into account
the renormalization group (RG) scaling properties near the low-energy fixed
point, we calculate the complete phase diagram as a function of doping, which
shows some universal geometric features. The d-wave SC dome terminates on
the over-doped side at the fixed point of the RG, which is a quantum critical
point. Optimal doping is estimated to occur just below 3/2π2. The critical
temperature for SC at optimal doping is set mainly by the universal nodal
Fermi velocity and lattice spacing, and is estimated to average around 140 K
for LSCO. The pseudogap energy scale is identified with the RG scale of the
coupling.

PACS numbers: 71.10.Ay, 11.10.−z, 11.30.−j

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the renormalization group (RG) framework, Landau’s theory of Fermi liquids is
characterized by the irrelevance of the interactions of particles near the Fermi surface, in
other words the low-energy fixed point is simply a free theory of fermions. The underlying
reasons for the wide success of Landau/Fermi liquid theory are well understood [1–5], and
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consequently the known models of non-Landau/Fermi liquids are relatively rare. (Henceforth
referred to simply as non-Fermi liquids.) An important exception is the Luttinger liquid
and other related models consisting of quartic interactions of Dirac fields in d = 1 spatial
dimension. Here the non-Fermi liquid behavior can be attributed to the fact that in 1d, quartic
interactions of Dirac fields are marginal operators in the RG sense. In higher dimensions
quartic interactions of Dirac fermions are irrelevant and this is one of the reasons why
candidate non-Fermi liquid models were not found in the previous works. Whereas more
exotic non-Fermi liquid models have been proposed which typically involve gauge fields,
the lack of non-Fermi liquid models in 2d appears paradoxical when one considers even
the simplest models of itinerant electrons with quartic interactions, such as the Hubbard
or t-J model, which are believed to be at strong coupling. Since such models have been
proposed as good starting points for thinking about high-Tc superconductivity in the cuprates
[6, 7, 9], it is certainly worthwhile to continue to try and construct relatively non-exotic models
of continuum fermions with quartic interactions that have some resemblance to the Hubbard
model and have non-Fermi liquid behavior in the normal state.

Though the search for a novel kind of non-Fermi liquid in 2d provided one of the main
initial motivations for the formulation of the model that will be presented and analyzed in this
work, the model turns out to have many unexpected bonus features, almost all of which are
intrinsic to 2d. We list the most prominent:

• The 4-fermion interaction is unique for spin- 1
2 electrons and automatically has SO(5)

symmetry. In 2d the interactions are relevant and the model has a low-energy interacting
fixed point with non-classical exponents which can be computed perturbatively.

• The model generalizes to N flavors, where N = 2 corresponds to spin- 1
2 electrons, and

has Sp(2N) symmetry. Since Sp(4) = SO(5) this provides an underlying framework
based on a microscopic theory for exploring the ideas of Zhang based on SO(5) [10, 11].
In particular, one can derive the effective Ginzburg–Landau theory.

• Because of the SO(5) symmetry the model naturally has both anti-ferromagnetic
(AF) and superconducting (SC) order parameters that form the five-dimensional vector
representation of SO(5). For repulsive interactions the model has AF order and no SC
order in mean field approximation.

• When one incorporates momentum-dependent scattering to 1-loop to go beyond mean
field, an attractive d-wave channel opens up and the momentum dependence of the gap
can be calculated. This d-wave SC phase terminates on the over-doped side at the RG
fixed point, which is a quantum critical point. Due to mathematical properties of the
d-wave gap equation, it also terminates on the under-doped side yielding a ‘dome’. Due
to the properties of the RG flow, this attractive d-wave instability exists for arbitrarily
strong repulsive interactions at short distances.

• Although the model may be at arbitrarily strong coupling at short distances, the low-
energy fixed point is at a relatively small coupling ≈1/8, and this renders the model
perturbatively calculable. We are thus able to calculate the main features of the complete
phase diagram as a function of a doping variable, including the phase boundary of the
d-wave superconducting dome and estimate the optimal doping fraction, which is near
3/2π2 ≈ 0.15. This phase diagram depends on a single parameter 0 < γ < 1 which
encodes the ratio of the strength of the coupling at short versus long distances. In
figure 1 we summarize the results of our calculations for γ = 1, which corresponds to
infinite coupling at short distances. The overall scale of temperature is set by the universal
nodal Fermi velocity and the lattice spacing.
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Figure 1. Calculated phase diagram as a function of hole doping, which depends on a single
parameter 0 < γ < 1 determined by the strength of the interaction at short distances. We set
γ = 1 corresponding to infinitely strong coupling. The vertical axis represents the low-energy
scale relative to the cut-off. What is shown are solutions δ′

s and δ′
q of the AF and d-wave gap

equations (109) and (120) in units of the cut-off �c . The critical temperatures are proportional
to these gaps with constants of order unity which we estimate, equations (167) and (169). The
overall temperature scale is determined by the universal nodal Fermi velocity and lattice spacing
(171). The running coupling g in the gap equations is in terms of x in equation (147), where x
is the inverse dimensionless coupling. The hole-hoping h(x) is the 1-loop-corrected expression
(160). The straight line Tpg is the renormalization group scale corresponding to the energy scale
of the coupling, equation (144), and represents the boundary to the pseudogap region. The AF
transition point at hAF = 3/4π2 is first order. The SC transition at h∗ = 3/2π2 is second order
and corresponds to the fixed point of the renormalization group, i.e. a quantum critical point.
The transition point h1 ≈ 0.13 is not universal, but relies on mathematical properties of the gap
equation.

Many of the above properties were highlighted on a list of the most important features of
high-Tc superconductivity compiled early on in the subject [6, 9]. Because of the importance
of the CuO2 planes, high Tc is believed to be essentially a 2d phenomenon. This, along
with the detailed properties of the solution of our model, in particular the phase diagram,
led us to propose it as a model of high-Tc superconductivity [12]. If our theory turns out
to be the correct description, it reveals that the phenomenon of high-Tc superconductivity
is remarkably universal, with a single energy scale, and its main features follow from the
existence of the low-energy fixed point in 2d. It is truly a beautiful phenomenon that has
managed to realize some subtle theoretical loopholes in the usual requirements of unitarity,
the spin-statistics theorem, and the Mermin–Wagner theorem, which are only possible in 2d.
Our theory represents a significant departure from the models considered thus far in connection
with high Tc, which are reviewed in [13–16], along with reviews of experimental results. On
the other hand, we believe it represents a particular scaling limit of the Hubbard model at
and just below half-filling, and is in this sense conservative in comparison with other more
exotic ideas, and is thus in line with the early ideas concerning the role of AF order and the
Heisenberg and Hubbard models [6–8]. However, our model is not simply a direct scaling
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limit of the Hubbard model with no attention paid to the Fermi surface, since the latter only
has an SO(4) = SU(2) ⊗ SU(2) symmetry, whereas our theory has the SO(5) symmetry. In
our theory the ‘fermion sign’ problem is solved by doing analytic, perturbative calculations
in a fermionic theory from the beginning, and relatively simple 1-loop calculations already
reveal the main features.

Irregardless of whether our model has been exactly realized in the laboratory, it can serve
as a useful tool for exploring many of the paradigms in the area of strongly correlated electrons
and also for developing new methods. For instance, we develop new gap equations that take
into account higher order scattering of Cooper pairs near the Fermi surface. Our analysis
shows clearly how in 2d one can obtain a momentum-dependent gap with a d-wave structure
from a rotationally invariant continuum field theory, i.e. without an explicit lattice that breaks
the rotational symmetry. This is interesting especially since the precise origin of the d-wave
symmetry of the SC gap has been unclear. We also show how to introduce doping in terms of
the coupling and RG scale, and a small non-zero temperature as a relativistic mass coupling.

For the remainder of this introduction we outline the organization of the paper and
summarize our main results. In section 2 we motivate the model by showing how it can
approximately describe particles and holes near a circular Fermi surface. The manner in
which we expand around the Fermi surface is in the same spirit as in [1–5] but differs in
some important ways. For a single spin-less fermion one thereby obtains a free Hamiltonian
of particles and holes with a massless, i.e. relativistic dispersion relation. In section 3 we
insist on a local quantum field description of the effective theory near the Fermi surface with
a consistent quantization. Since the particles are massless, the only known candidate field
theories are either Dirac or ‘symplectic’ fermions, which differ primarily by being first order
versus second order in spacetime derivatives, respectively. For the remainder of the paper we
focus on symplectic fermions since unlike the Dirac fermions, the interactions are relevant.
The model was first proposed in this context by one of us [17], where the groundwork was
done on the low-energy non-Fermi liquid fixed point and in part the AF properties; at the time
the SC properties were unknown. As explained in this paper, the central idea of this previous
work, that the AF order parameter is bilinear in symplectic fermion fields and that the low-
energy RG fixed point describes a quantum critical point, appears to be correct; however, as we
will see, the quantum critical point terminates the SC rather than AF phase. Quantum critical
points in the context of high Tc were emphasized earlier by Vojta and Sachdev [19]. The
issue of the unitarity of our theory was mostly resolved in [18] by noting that the Hamiltonian
is pseudo-Hermitian and this is sufficient for a unitary time evolution. In this paper, the
expansion around the Fermi surface provides a new view on the pseudo-Hermiticity and it is
explained how it is related to the kinematics of particles versus holes. The critical exponents
were computed to 2-loops in [18], which corrected some errors in [17]. In this paper we
analyze many more properties, in particular the AF and d-wave SC ordering properties for the
first time.

Since the consistency of the quantization of a fermionic theory with a Lagrangian that is
second order in time derivatives is at the heart of the unitarity issue, in section 4 we work out
in detail the d = 0 dimensional quantum-mechanical case where all the subtle consistency
issues are present. In this section we also construct the conserved charges for the Sp(2N)

symmetry. In section 5 the field theory version in d spatial dimensions is defined and spin and
charge are identified for the case of N = 2. In this section we also define the SO(5)-order
parameters for AF and SC order.

In section 6 we sketch an argument that the resistivity is linear in temperature in the
limit of no interactions. In the following section we consider small thermal perturbations near
T = 0. By comparing with the specific heat of a degenerate electron gas, we argue that a small
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non-zero temperature can be incorporated as a coupling in the Lagrangian corresponding to
relativistic mass m = αT and we estimate the constant α.

In section 8 the mean field analysis is carried out with potential competition between
AF and SC order. As we explain, these two phases actually do not compete in our model in
this approximation. As a check of the formalism, we reproduce some of the basic features
of the BCS theory for an s-wave gap in the case of an attractive coupling in section 9. For
repulsive interactions we find only AF order is possible in mean field approximation and this
is studied in section 10. There we first argue that this phase must be anti-ferromagnetic by
comparing our model with the low-energy nonlinear sigma model description of the Heisenberg
anti-ferromagnet. This gives another motivation for our model at half-filling away from the
circular Fermi surface, and explains how the same model can interpolate between an SC phase
and an AF one. We argue that the AF phase terminates in a first-order phase transition. The
AF gap is then the solution of a transcendental equation that is analyzed in various limits.

In section 11, orbital symmetries of momentum-dependent gaps are studied in a model-
independent way and we explain how a d-wave gap can arise. This analysis is based on a gap
equation which is derived in appendix A. In section 12 we compute the 1-loop contributions
to the scattering of Cooper pairs and show that at low energies the d-wave channel is attractive
if the number of components N < 3. Since the theory is free for N = 1, this means that only
the physically relevant N = 2 case has d-wave SC. This also means that the d-wave pairing
cannot be studied with large N methods.

Section 13 is devoted to describing our RG prescription which is specific to 2d. This is
necessary for a proper understanding of the phase diagram. In section 14 we present global
features of the phase diagram, which is characterized by some universal geometric relations,
and bears a striking resemblance to the cuprates. The SC phase terminates at a second-order
phase transition precisely at the low-energy RG fixed point, and is thus a quantum critical
point. We also estimate optimal hole doping. In section 15 we present detailed numerical
solutions to the AF and SC d-wave gap equations at non-zero temperature. For reasonable
values of the lattice spacing and universal nodal Fermi velocity, we estimate Tc ≈ 140 K on
average for SC in LSCO. In section 16 we describe the interpretation of the pseudogap within
our model.

Although we do not give a complete and rigorous derivation of our model from lattice
fermion models, in order to motivate and point out relations, we have collected some known
results about the latter in appendix B.

2. Expansion around the Fermi surface

2.1. Kinematics

Let us first ignore spin and consider a single species of fermion described by the free
Hamiltonian in momentum space

H =
∫

(ddk)(ε(k) − μ)c
†
kck, (1)

where μ is the chemical potential, we have defined (ddk) ≡ ddk/(2π)d , and{
c
†
k, ck′

} = (2π)dδ(d)(k − k′). (2)

At finite density and zero temperature, all states with ε � εF are filled, where the Fermi energy
εF depends on the density, and at zero temperature μ = εF . The Fermi surface SF is the
manifold of points kF satisfying ε(kF ) = εF .
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Figure 2. Expansion around the Fermi surface.

We wish to consider a band of energies near εF as shown in figure 2 for d = 2. Let k be
any wave vector in such a band, and let r(k) denote a ray from the origin to infinity along the
direction of k. We further assume that the Fermi surface is sufficiently smooth, such that r(k)

intersects SF only once. The latter implies that k can be uniquely expressed as

k = kF (k) + p(k), (3)

where kF (k) is the vector from the origin to the intersection of r(k) with SF . Whereas the
two vectors k and kF (k) are by construction parallel, the vector p(k) is either parallel or
anti-parallel to k. Let us fix p to be a small vector parallel to k, i.e. pointing radially outward,
as shown in figure 2. Since now kF (k) is uniquely determined by p, we may write kF (p).
Furthermore, since the particles below the Fermi surface correspond to −p, the energies near
the Fermi surface are approximately given by

ε(k) = εF ± p · vF (k), (4)

where ± corresponds to above or below the Fermi surface, and

vF (k) = �∇ε(k)|kF
(5)

is the Fermi velocity normal to SF .
Let us now assume that the Fermi surface is rotationally invariant, i.e. ε(k) depends only

on |k|. In 2d the Fermi surface SF is thus a circle. This leads to the simplification that
kF = |kF (k)| and vF = |vF (k)| are independent of k. For any k in the band,

k = (kF ± p)p̂, (6)

where p = |p| and p = pp̂. Furthermore, since vF is normal to SF , the energies are linear in
|p|:

ε(k) = εF ± vF |p|. (7)

For non-relativistic particles with ε(k) = k2/2m∗, vF = kF /m∗.
Since the map from k to p is one-to-one, we can define the following operators:

ap = ckF +p, bp = c
†
kF −p, (8)
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where it is implicit that kF depends on p. The above is a canonical transformation, since{
a†

p, ap′
} = {

b†
p, bp′

} = (2πd)δ(d)(p − p′). (9)

After normal ordering, the Hamiltonian for the particles in the band is defined to be

H =
∫

|p|<�c

(ddp)
[
(vF |p| − μ̂)a†

pap + (vF |p| + μ̂)b†
pbp

]
, (10)

where μ̂ = μ − εF is zero at zero temperature. For the remainder of this paper we mostly
set μ̂ = 0. Since we are only interested in a band of energies near the Fermi surface, we
have introduced a cut-off �c. The vacuum |0〉 is defined to satisfy ap|0〉 = bp|0〉 = 0. This
corresponds to ckF +p|0〉 = c

†
kF −p|0〉 = 0, which correctly implies that all states with ε < εF

are filled. The ap and bp thus correspond to particles and holes, respectively.
There is an approximation made in obtaining the above Hamiltonian having to do with the

density of states, and this is crucial to understanding how our expansion differs from previous
works. In the rotationally invariant case, for particles above the Fermi surface:∫

ddk =
∫

d�

∫
dp(kF + p)d−1, (11)

where d� are angular integrals. Note that due to equation (6) the angular integrals for k and
p are identical. At least two approximations to the above are meaningful. The first favors low
energies where one approximates kF + p ≈ kF . This is the approximation that is commonly
made in the literature [1, 2]. On the other hand, expanding out the (kF +p)d−1, at high energies
the leading term is pd−1, and is the most sensitive to the short-distance physics and spatial
dimensionality. A possible shortcoming of the first, low-energy approximation is that the
high-energy physics is discarded from the beginning. It cannot be recovered by the RG flow
to low energies since the latter is irreversible. In the physical problem we are considering,
the short-distance physics of the strong Coulomb repulsion is known to be important for
understanding the AF phase, so it makes sense to adopt an approximation that favors high
energies from the beginning and to then incorporate their effects by an RG flow to lower
energies. We thus keep the most important term at short distances and set ddk = ddp, i.e.
kF + p ≈ p. This is in line with the usual RG idea that it is important to fix the high-energy
physics as accurately as possible, and then flow down to lower energies. Finally, our choice
is necessary for the 2d effective field theory description in the following section. However,
one should not conclude that every theory with a circular Fermi surface can be described by a
relativistic field theory. One signature of a relativistic description is a density of states that is
linear in energy:

∫
d2p = 2πvF

∫
dε ε.

The above expansion around the Fermi surface is thus not identical to the expansion in
[1–5], where the integration over p is taken to be normal to SF times the angular integrations,
and it is assumed that p 
 kF . This leads to the choice

∫
ddk = ∫

d�
∫

dp kd−1
F , and the

constant kF is absorbed into the definitions of the operators. Thus in the approach followed
in [1–5], although the angular integrals obviously depend on d, the scaling analysis of the
p dependence leads to marginal 4-fermion interactions for any d, and the resulting theory is
effectively one-dimensional, or a collection of such theories, one for each angular direction.
Notably, it was not possible to obtain a non-Fermi liquid based on 4-fermion interactions in
this approach [2].

In contrast, in the approach developed in this paper there is a strong dependence on d, as
in other critical phenomena, and this will turn out to be very important. In particular, it leads to
a non-Fermi liquid in 2d. There are other important justifications for this choice. In particular,
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Figure 3. Allowed processes.
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Figure 4. Unallowed processes.

near half-filling where the interacting lattice model can be mapped to the Heisenberg anti-
ferromagnet, there is known to be a relativistic description of the low-energy, long-wavelength
limit in terms of the O(3) nonlinear sigma model. It will be shown in section 10 that our
choice of field theory near the circular Fermi surface can be extrapolated to half-filling in that
an independent derivation of it can be provided exactly at half-filling.

For general processes, physical momentum conservation of the k’s is not equivalent to p

conservation. However, consider a zero-momentum process proportional to δ(
∑

i ki ). If the
k’s are all exactly on the Fermi surface, then this implies

∑
i kF (ki ) = 0. For even numbers

of particles, since all vectors on the Fermi surface have the same length, this is satisfied by
pairs of particles with opposite kF . Allowing now small deviations pi from the Fermi surface,
one has

δ

(∑
i

ki

)
= δ

⎛⎝ ∑
particles

pi −
∑
holes

pi

⎞⎠ . (12)

Because of the particle/hole transformation for the b’s in equation (8), this is equivalent to
overall p conservation. Note that by construction it is not possible for the momentum of a
particle and a hole to add up to zero, so in the above δ-function, holes are paired with other
holes, and particles with other particles. Therefore, spatial translational invariance of our local
field theory will ensure physical momentum conservation of the k’s for this class of processes.

The important allowed processes are shown in figure 3. Examples of an unallowed process
are shown in figure 4. The distinction between the allowed and unallowed processes can be
made explicit by introducing an operator C that distinguishes particles and holes:

CapC = ap, CbpC = −bp, (13)

where C is a unitary operator satisfying C = C† so that C2 = 1. An eigenstate with pairs
of particles and/or pairs of holes is then required to have C = 1. We will return to this in
connection with the pseudo-Hermiticity of symplectic fermions in the sequel.
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Figure 5. Fermi surface contours for free lattice fermions in 2d with lattice spacing a = 1.

2.2. Lattice fermions

In the following, our field theory model will be related to lattice models of intinerant electrons
such as the Hubbard model, although we do not claim a precise equivalence. The known
2d square lattice model results we will need to make the comparison are all contained in
appendix B. In this section we consider only the free, hopping term. In momentum space the
1-particle energy is (B.5)

εk = −2t (cos kxa + cos kya), (14)

where a is the lattice spacing. Equal energy contours in the first Brillouin zone are shown
in figure 5. The Fermi surface at half-filling is the square diamond with corners on the x, y

axes. Note that one does not have to be very far below half-filling for the contours to be
approximately circular. The free local field theory model in the following section can thus be
viewed as an approximate effective theory for free particles on the lattice below half-filling.

An important point is that our model is not simply a direct continuum limit of the
lattice model since, without additional care, the latter does not take into account the
Fermi surface at finite density. For instance, whereas the Hubbard model has at most an
SO(4) = SU(2) ⊗ SU(2) symmetry [36], our continuum model has the larger SO(5)

symmetry. Furthermore, as will be explained in section 10, the success of our model can
be attributed to the fact that an alternative justification of it can be given right at half-filling so
that it can actually interpolate between half-filling and below.

3. Requirements on the free local field theory

The main requirements we impose for a local field theory description of the last section are as
follows:

(i) The theory has a Lagrangian description with a consistent quantization.

9
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(ii) In momentum space the Hamiltonian reduces to equation (10) for particles and holes of
energy vF |p|. The latter is a relativistic dispersion relation for massless particles.

In order to motivate our arguments, let us start from non-relativistic particles with
εk = k2/2m∗. The second-quantized description consists of a single field 	(x, t) with
Lagrangian

L =
∫

ddx

(
i	†∂t	 − 1

2m∗
�∇	† · �∇	

)
. (15)

The field has the momentum space expansion

	(x, t) =
∫

(ddk)ck e−iεk+ik·x. (16)

Expanding around the Fermi surface one finds

	(x, t) = e−iεF t

∫
(ddp)	̃p(x, t) eikF (p)·x, (17)

where

	̃p(x, t) = ap e−ivF |p|t+ip·x + b†
p eivF |p|t−ip·x. (18)

We wish to find an effective theory for 	̃, which satisfies the relativistic wave equation:(
∂2
t − v2

F
�∇2)	̃p(x, t) = 0. (19)

Thus, due to the kinematics of the expansion around the Fermi surface we identify an emergent
Lorentz symmetry. In 2d this Lorentz symmetry is SO(3). The case of d = 1 is special in that
the Fermi surface consists of only two disconnected points kF = ±kF , and decomposition (17)
naturally separates into left and right movers. For higher dimensions there is no such separation
since all points on the Fermi surface are related by spatial rotations and are continuously
connected. There are many additional reasons why d = 1 is the exceptional case, and these
will be pointed out where appropriate in the sequel since some of the literature attempts to
draw analogies between 1d and 2d.

There are only two known candidate field theories which differ in whether the Lagrangian
is first or second order in derivatives. First consider the case of first order. One then needs to
factor the operator ∂2

t − �∇2 into two first-order multiples. The only way to accomplish
this is to promote 	̃ to a multi-component field and introduce a matrix representation
γ μ, μ = 0, 1, . . . , d, of the Clifford algebra:

{γ μ, γ ν} = 2ημν, (20)

where ημν = diag(1,−1, .,−1). One then has∑
μ,ν

γ μγ ν∂μ∂ν =
∑

μ

∂μ∂μ = ∂2
t − �∇2. (21)

(We have adopted the relativistic notation xμ = (x0, x1, . . . , xd) = (t, x) and ∂μ = ∂
∂xμ , and

henceforth, repeated indices are implicitly summed over.) The Lagrangian is then the standard
first-order Dirac Lagrangian:

L =
∫

ddx iψγ μ∂μψ, (22)

where ψ = ψ †γ 0. The smallest representation of the Clifford algebra is two-dimensional:
γ 0 = σz, γ

1 = iσx and γ 2 = iσy , where �σ are the standard Pauli matrices. In this simplest
case, although there is a doubling of components, they are constrained by the Dirac equation of

10
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motion and the spectrum still consists of one species of particles and holes with the Hamiltonian
equation (10).

Interactions are relevant to the low-energy physics if the operator characterizing them has
scaling dimension less than d + 1. The classical scaling dimension of the Dirac field ψ is
d/2 in d spatial dimensions, thus a quartic interaction has dimension 2 · d and is thus only
relevant for d < 1. It is not even perturbatively renormalizable for d > 1. Thus, the Dirac
theory should lead to ordinary Landau–Fermi liquid behavior in 2d. It is noteworthy that
once again d = 1 is special, and this helps to explain how for instance the 1d Hubbard model
can be mapped onto interacting Dirac fermions, and the low-energy fixed point found using
special bosonization techniques and spin–charge separation [35]. Simply based on the fact
that the interactions in the Hubbard model are strong in 2d, one can rule out a description in
terms of Dirac fields with quartic interactions since the latter are irrelevant. Furthermore, it is
already understood that one normally needs additional special properties in order to obtain the
first-order Dirac theory. For example, it is known to arise when one expands around special
nodes (Dirac points) on the Fermi surface for a hexagonal lattice [21], as in graphene, and the
multiple components of the Dirac field correspond to different sub-lattices. There is no reason
to expect this here for a square lattice, as in the cuprates.

The other candidate field theory is of second order in derivatives, with kinetic term

S =
∫

dt ddx ∂μχ−∂μχ+. (23)

For χ± fermionic (Grassman) fields, this is a very unconventional theory, since it potentially
has problems with the spin-statistics theorem and unitarity; in high-energy elementary particle
theory it usually corresponds to ghost fields. These issues will be discussed in detail and
resolved completely in the following two sections. Here, let us give the main arguments for
why this should be the right starting point:

(i) As shown in the following two sections, the free theory in momentum space corresponds
precisely to the Hamiltonian (10) for particles and holes near a circular Fermi surface.
This is of course a perfectly Hermitian theory with no negative norm states.

(ii) The fundamental field χ has scaling dimension (d − 1)/2 and thus quartic interactions
have dimension 2(d −1) which is actually relevant for d < 3. Thus it can have non-Fermi
liquid behavior.

(iii) Although we are led to consider this model for the nearly circular Fermi surface below
half-filling, a simple argument leads to the same model at half-filling. It is well known
that a low-energy description of excitations above the staggered AF state is described by
the O(3) nonlinear sigma model for a field �φ constrained to have constant length with the
action

S =
∫

dt ddx ∂μ
�φ · ∂μ �φ. (24)

(See appendix B.) In our model the anti-ferromagnetic order parameter �φ is bilinear in
the fields �φ = χ− �σχ+/

√
2. The nonlinear constraint on the �φ fields follow from imposing a

similar constraint on the χ fields: χ−χ+ = constant. This was pointed out in [17]. Inserting
this into the above action one finds that one obtains the second-order action (23) for the χ

fields up to irrelevant operators (equation (104)). Thus the symplectic fermion model with
interactions can in principle describe AF order, and in the sequel we will show that this is
indeed the case. This is explained in more detail in section 10.

Since vF only serves to convert dimensions of time and space, it plays the role of the
speed of light; we can set it to unity since it can always be restored by dimensional analysis.

11
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The important point here is that vF is fixed and universal in our model, in particular it does
not depend on the coupling. In the following the doping will be related to the coupling, so
vF does not depend on doping either. For high-Tc materials, we believe the ‘speed of light’
has actually already been measured [20]. The Fermi surface at half-filling is closest to the
nearly circular surface below it in the nodal k = (0, 0) to (π, π) direction, so our vF should
correspond to this nodal Fermi velocity. Remarkably, the latter was measured to be universal
at low energies, i.e. independent of doping in [20]. Whereas this universality of vF has not
been explained theoretically up to now, it is a necessary aspect of our theory. Taking the slope
∂E/∂k of the curves in [20] we estimate vF ≈ 1.4 ev Å = 210 km s−1 for LSCO. As we will
show in section 15, this gives very reasonable estimates of Tc. Another signature that the
system may be in a relativistic regime is a density of states that is linear in energy, as explained
in the last section.

4. Symplectic fermion quantum mechanics

As stated above, symplectic fermions are primarily characterized by a Lagrangian that is
second-order in space and time derivatives. Since this is unfamiliar to most readers and there
are some delicate issues in the quantization of such theories, let us first start with the simplest
case of d = 0 quantum mechanics.

4.1. Canonical quantization

In order to draw comparisons, let us first consider a first-order Lagrangian as in the Dirac
theory:

L =
N∑

α=1

(
ic†α∂t cα − ωc†αcα

)
. (25)

It is well understood that this Lagrangian has two consistent quantizations, i.e. one can
impose either canonical commutation relations

[
cα, c

†
β

] = δα,β or canonical anti-commutation

relations
{
cα, c

†
β

} = δα,β . In both cases the Hamiltonian is H = ∑
α ωc†αcα . It is clear

that both options are possible since equation (15) is a proper second quantized description of
either bosons or fermions. For future reference we note that the model has a manifest SU(N)

symmetry.
The second-order bosonic version of the above is just the ordinary harmonic oscillator

with L = ((∂tq)2 − ω2)/2. Since the first-order Lagrangian can be consistently quantized as
a fermion or boson, one expects that the second-order case should also be quantizable as a
fermion, and as we now describe, this is indeed the case. In order to have a fermionic version,
we need at least 2 degrees of freedom since fermionic variables square to zero. Let us therefore
consider the Lagrangian

L = χ̇−χ̇+ − ω2χ−χ+, (26)

where χ are Grassman variables:

{χi, χj } = 0, (27)

which implies (χ−)2 = (χ+)2 = 0, and we have defined χ̇ = ∂tχ . The canonical momenta
are p− = ∂L/∂χ̇− = χ̇+ and p+ = ∂L/∂χ̇+ = −χ̇−, which leads to the canonical anti-
commutation relations

{χ−, χ̇+} = −{χ+, χ̇−} = i. (28)

12
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The canonical Hamiltonian is simply

H = χ̇−χ̇+ + ω2χ−χ+. (29)

The equation of motion is
(
∂2
t + ω2

)
χ = 0. Because this is second order, the mode

expansion involves both positive and negative frequencies:

χ−(t) = 1√
2ω

(a† e−iωt + b eiωt ),

χ+(t) = 1√
2ω

(−b† e−iωt + a eiωt ).

(30)

The canonical anti-commutation relations (28) then require

{a, a†} = {b, b†} = 1 (31)

with all other anti-commutators equal to zero. The Hamiltonian is

H = ω(a†a + b†b − 1). (32)

4.2. Pseudo-Hermiticity

The only subtle aspect of the above quantization is the extra minus sign in the expansion of
χ+ in equation (30), which was necessary in order to have the canonical relations (31). This
minus sign implies that χ+ is not the Hermitian conjugate of χ−. One can understand this
feature more clearly, and also keep track of it, with the operator C that distinguishes particles
and holes in equation (13):

χ+ = C(χ−)†C. (33)

In terms of the original χ variables, the Hamiltonian is pseudo-Hermitian, H † = CHC.
However, after using the equations of motion and expressing it in terms of a, b’s, since it is
quadratic in b’s, the Hamiltonian (32) is actually Hermitian. This issue will be revisited when
interactions are introduced in the following section.

4.3. Symmetries

We now study the symmetries of the N-copy theory. Introduce variables χi
α, i = −, +, α =

1, 2, . . . , N and define the Lagrangian

L = 1

2

∑
i,j,α

εij

(
χ̇ i

αχ̇ j
α − ω2χi

αχj
α

)
, (34)

where εij is the 2 × 2 anti-symmetric matrix ε−+ = −ε+− = 1. The Hamiltonian is

H = 1

2

∑
i,j,α

εij

(
χ̇ i

αχ̇ j
α + ω2χi

αχj
α

)
. (35)

Arrange χi
α into a 2N -component vector and consider the transformation χ → Mχ , where

M is a 2N -dimensional matrix. Then the Lagrangian is invariant if MtεNM = εN where
εN = ε ⊗ 1N , and Mt is the transpose. This implies that M is an element of the group Sp(2N)

of dimension N(2N + 1). Interestingly, of the classical Lie groups, Sp(2N) is the only one
that does not play any known role in elementary particle physics [25]. Note that the bosonic
version of the theory with 2N real components has the symmetry O(2N) with dimension
N(2N − 1) + 1, thus the fermionic version always has a larger symmetry. The N-component
symplectic fermion also has a larger symmetry than the N-component first-order fermionic
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action which has a U(N) symmetry or an O(2N) symmetry if the complex fermions are
rewritten in terms of 2N real fields.

The conserved charges that generate the N(2N + 1)-dimensional Lie algebra of Sp(2N)

are easily constructed. Define

Q0
αβ = −i

(
χ−

α χ̇+
β + χ+

β χ̇−
α

)
,

Q−
αβ = −i

(
χ−

α χ̇−
β + χ−

β χ̇−
α

)
,

Q+
αβ = i

(
χ+

α χ̇+
β + χ+

β χ̇+
α

)
.

(36)

One can easily verify that the Hamiltonian H commutes with all the charges Q using{
χ−

α , χ̇+
β

} = −{
χ+

α , χ̇−
β

} = iδαβ,{
χi

α, χ
j

β

} = {
χ̇ i

α, χ̇
j

β

} = 0.
(37)

In ‘momentum’ space, the charges are

Q0
αβ = a†

αaβ − b
†
βbα,

Q−
αβ = a†

αbβ + a
†
βbα,

Q+
αβ = b†

αaβ + b
†
βaα

(38)

and they satisfy the Hermiticity properties(
Q0

αβ

)† = Q0
βα,

(
Q−

αβ

)† = Q+
αβ. (39)

5. Field theory version with spin and interactions

5.1. Lagrangian and Hamiltonian

The field theory version in d spatial dimensions follows straightforwardly from the above
d = 0 case with the addition of spatial or momentum integrals. Introducing fields χi

α(x, t),
the action is

S = 1

2

∫
dt ddx

∑
i,j,α

εij

(
∂μχi

α∂μχj
α − m2χi

αχj
α

)
(40)

and the equations of motion are

(∂μ∂μ + m2)χ = 0. (41)

The momentum space expansion is

χ−(x, t) =
∫

(ddp)√
2ωp

(
a†

p e−ip·x + bp eip·x),
χ+(x, t) =

∫
(ddp)√

2ωp

( − b†
p e−ip·x + ap eip·x), (42)

where ωp =
√

p2 + m2 and p · x ≡ ωpt − p · x. (We do not display the α indices since they
just correspond to N identical copies.) The canonical anti-commutation relations are

{χ−(x, t), χ̇+(x′, t)} = −{χ+(x, t), χ̇−(x′, t)} = iδ(d)(x − x′) (43)

which in momentum space leads to{
ap, a

†
p′
} = {

bp, b
†
p′
} = (2π)dδ(d)(p − p′). (44)

(All other anti-commutators are zero.)
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The Hamiltonian is

H =
∫

(ddp)

N∑
α=1

ωp

(
a†

p,αap,α + b†
p,αbp,α

)
. (45)

In the limit m → 0, we obtain the effective Hamiltonian near the Fermi surface in
equation (10), as desired. The mass m in this section is an infrared regulator and is unrelated
to the non-relativistic mass m∗ above. In section 7 we will show that it can be viewed as
proportional to the temperature.

The field theory has the same Sp(2N) symmetry as the quantum-mechanical version. The
expressions for the conserved charges are identical to equations (36) and (38) with additional
integrals over x or p.

There is a unique 4-fermion interaction that preserves the Sp(2N) symmetry:

Sint = −π2g

∫
dt ddx(χ−εNχ+)2 = −4π2g

∫
dt ddx

(∑
α

χ−
α χ+

α

)2

. (46)

(We have included an overall π2 so that the RG equations below for g have no π ’s; our
convention is the same as in [18].) For N = 2, even without imposing the Sp(4) symmetry,
there is a unique interaction due to fermionic statistics since there are only four independent
fields, which implies that higher order terms beyond quartic interactions are zero by Fermi
statistics. This interaction is automatically SO(5) invariant. Positive g corresponds to
repulsive interactions. Since the field χ has classical scaling dimension (d − 1)/2, the
interaction is a dimension 2(d − 1) operator which is relevant for d < 3 as previously
mentioned.

5.2. Pseudo-Hermiticity

The symplectic fermion action (40) has a Lorentz invariance if χ is understood to be a
Lorentz scalar. Since χ is fermionic, to a particle physicist this model would appear to
violate the spin-statistics theorem. There are two separate aspects of this issue. First of
all, in the condensed-matter context, rotational spin is an internal flavor symmetry (spin- 1

2
fermions corresponds to N = 2) which is not viewed as embedded in the Lorentz group. This
implies that spin- 1

2 particles are not forced to be described by the first-order Dirac theory.
There is no violation of the spin-statistics connection in our theory since we are quantizing
spin- 1

2 particles with fermionic fields. The potential problem rather has to do with unitarity,
as explained in the quantum-mechanical case studied in the last section, and is manifested
in the pseudo-Hermiticity property (33). This explains how the proof of the spin-statistics
connection is circumvented: the proof assumes that the Hamiltonian is built out of fields and
their Hermitian conjugates and thus does not allow for different fields being related by pseudo-
Hermitian conjugation [5]. Furthermore, in the end the free Hamiltonian in momentum space
is a perfectly Hermitian theory with no negative norm states.

Whereas the free theory is Hermitian in momentum space, for the interacting theory, it
follows from (33) that the Hamiltonian is pseudo-Hermitian:

H † = CHC, (47)

where the unitary operator C = C† and C2 = 1. This sort of generalization of Hermiticity was
understood to give a consistent quantum mechanics long ago by Pauli [22], and more recently
in connection with PT -symmetric quantum mechanics [23, 24]. Let us summarize the main
properties enjoyed by pseudo-Hermitian Hamiltonians:
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(i) Define a C-Hermitian conjugation as follows:

A†c = CA†C. (48)

Then the usual rules are satisfied:

(AB)†c = B†cA†c , (aA + bB)†c = a∗A†c + b∗B†c . (49)

(ii) Define a C-conjugate inner product:

〈ψ ′|ψ〉c ≡ 〈ψ ′|C|ψ〉. (50)

Then time-evolution is unitary:

〈ψ ′(t)|ψ(t)〉c = 〈ψ ′| eiH †tC e−iHt |ψ〉 = 〈ψ ′(0)|ψ(0)〉c. (51)

(iii) The eigenvalues of H are real:

(E − E∗)〈ψE|ψE〉c = 〈ψE|(CH − H †C)|ψE〉 = 0. (52)

(iv) Diagonal matrix elements of C-pseudo-Hermitian operators A = A†c are real. This will
be important in the sequel since it guarantees the reality of vacuum expectation values of
pseudo-Hermitian order parameters. For our model

H †c = H, (χ−)†c = χ+, (χ−χ+)†c = χ−χ+. (53)

In the present work there is a new aspect of the pseudo-Hermiticity that relates to the
kinematics of the expansion around the Fermi surface. As explained in section 2, for the
4-particle processes near the Fermi surface, conservation of p relative to the Fermi surface
is equivalent to the conservation of the physical k momentum if particles are paired with
particles and holes with holes. Since C = ±1 for particles versus holes, on physical grounds
we should restrict to eigenstates with even numbers of holes and even numbers of particles
with C = 1. Let |ψE〉 denote an eigenstate of H which is also an eigenstate of C. Then
H †|ψE〉 = C2H |ψE〉 = H |ψE〉. Thus for the eigenstates of interest, H = H †.

5.3. Charge and spin

In order to describe spin- 1
2 electrons, as usual we treat the spin as a flavor and thus consider

the N = 2 theory. The symmetry of the free theory is Sp(4) = SO(5). A subgroup of this
large (ten-dimensional) symmetry can be identified with rotational spin and charge.

It was pointed out in [18] that there are potentially two ways to identify electronic spin,
and the focus in that work was the SU(2) subalgebra that exists for all N and acts on the ±
indices of χ±

α . It turns out that the other identification is more natural in the present context
since, as explained in section 2, the two components corresponding to the ± indices are already
necessary for the expansion of a single spin-less fermion near the Fermi surface. There is
actually an analog of the identification of spin and charge for arbitrary N. Let M = e−m be
an element of the group Sp(2N) in the defining 2N -dimensional representation. Using the
relation

MtεNM = εN, (54)

the elements of the Lie algebra satisfy

mtεN = −εNm, (55)

and a basis is the following: m ∈ {1 ⊗ a, σx ⊗ ax, σy ⊗ ay, σz ⊗ az}, where σi are the Pauli
matrices, a is an N × N dimensional anti-symmetric matrix and ai are N × N symmetric
matrices [25]. Clearly, Sp(2N) has an SU(2)⊗N sub-algebra generated by σi ⊗ I (α), where
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I (α) = diag(0, 0, . . . , 1, 0, . . . , 0) with the 1 in the αth entry. For N = 2 this corresponds
to an SO(4) = SU(2) ⊗ SU(2) symmetry. However, since this sub-algebra does not mix
the flavors, it is not the right sub-group for identification with spin as a flavor. The correct
identification is the SU(N) sub-algebra generated by 1 ⊗ a and σz ⊗ az where now az is also
traceless. There is also a U(1) which commutes with the SU(N) corresponding to σz ⊗ 1N .
The SU(N) is generated by the charges Q

(0)
αβ , which form a closed algebra:[

Q0
αβ,Q0

α′β ′
] = i

(
δαβ ′Q0

α′β − δβα′Q0
αβ ′

)
. (56)

The U(1) we identify with electric charge is generated by Qe = ∑
α Q0

αα .
Let us now return to the physically interesting case of N = 2 and label the two components

as α =↑,↓, corresponding to up and down spins. The SU(2) spin symmetry is generated by

Qz = 1

2

(
Q0

↑↑ − Q0
↓↓

) = − i

2

∫
ddx

(
χ−

↑ χ̇+
↑ + χ+

↑ χ̇−
↑ − χ−

↓ χ̇+
↓ − χ+

↓ χ̇−
↓

)
=

∫
(ddp)

(
1

2

(
a
†
p↑ap↑ − a

†
p↓ap↓

) − 1

2

(
b
†
p↑bp↑ − b

†
p↓bp↓

))
,

Q+ = 1√
2
Q0

↑↓ = − i√
2

∫
ddx

(
χ−

↑ χ̇+
↓ + χ+

↓ χ̇−
↑

) = 1√
2

∫
(ddp)

(
a
†
p↑ap↓ − b

†
p↓bp↑

)
,

Q− = 1√
2
Q0

↓↑ = − i√
2

∫
ddx

(
χ−

↓ χ̇+
↑ + χ+

↑ χ̇−
↓

) = 1√
2

∫
(ddp)

(
a
†
p↓ap↑ − b

†
p↑bp↓

)
(57)

satisfying the SU(2) Lie algebra:

[Qz,Q±] = ±Q±, [Q+,Q−] = Qz. (58)

(As before χ̇ = ∂tχ .) The U(1) charge is generated by

Qe = Q0
↑↑ + Q0

↓↓ = −i
∫

ddx
(
χ−

↑ χ̇+
↑ + χ+

↑ χ̇−
↑ + χ−

↓ χ̇+
↓ + χ+

↓ χ̇−
↓

)
=

∫
(ddp)

((
a
†
p↑ap↑ + a

†
p↓ap↓

) − (
b
†
p↑bp↑ + b

†
p↓bp↓

))
. (59)

The conserved electric current corresponding to the above charge is

J e
μ = −i

∑
α=↑,↓

(
χ−

α ∂μχ+
α + χ+

α ∂μχ−
α

)
. (60)

The fields χ± have electric charge Qe = ±1. Commutations of the fields with the SU(2)

generators show that
(
χ−

↑ , χ−
↓

)
form a doublet whereas

(
χ+

↑ , χ+
↓
)

is the conjugate:[
Qz, χ

±
↑

] = ∓ 1
2χ±

↑ ,
[
Qz, χ

±
↓

] = ± 1
2χ±

↓ . (61)

Note that the above identification is consistent with a being particles and b holes: Qz|a↑〉 =
1
2 |a↑〉 whereas Qz|b↑〉 = − 1

2 |b↑〉. Also, the a-particles have Qe = 1 whereas the b have
Qe = −1.

The additional six conserved charges with electric charge ±2 that complete the SO(5)

Lie algebra are

Q±
↑↑ = −2i

∫
ddx χ±

↑ χ̇±
↑ , Q±

↓↓ = −2i
∫

ddx χ±
↓ χ̇±

↓ , (62)

Q±
↑↓ = −i

∫
ddx

(
χ±

↑ χ̇±
↓ + χ±

↓ χ̇±
↑

)
. (63)

These symmetries flip the charge and spin of the fields, for instance[
Q+

↑↑, χ−
↑

] = 2χ+
↑ ,

[
Q+

↑↓, χ−
↑

] = χ+
↓ ,

[
Q+

↑↓, χ−
↓

] = χ+
↑ . (64)
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There is no real separation of spin and charge degrees of freedom in our model at this
stage, unlike Dirac fermions in 1d, where this separation relies on bosonization. However, as
we explain in section 8, the Goldstone bosons are electrically neutral but carry spin quantum
numbers.

5.4. SO(5)-order parameters

The four fields χ±
↑ , χ±

↓ are in the four-dimensional spinor representation of SO(5). (See, e.g.
[25].) The important operators are bilinears, which decompose as 4⊗4 = 1⊕5⊕10, where 1

is the singlet χ−χ+, the 5 is the vector representation and 10 is the adjoint. The 10 corresponds
to the currents constructed above. The 5 will serve as the order parameters of our model in the
sequel. A triplet of fields �φ = (φx, φy, φz) transforming under the three-dimensional vector
representation of the spin SU(2) is the following:

φ+ = χ−
↑ χ+

↓ , φ− = χ−
↓ χ+

↑ , φz = 1√
2

(
χ−

↑ χ+
↑ − χ−

↓ χ+
↓
)
, (65)

where φ± = (φx ± iφy)/
√

2. Note that these fields are electrically neutral. Let us also define
two SU(2) singlets that carry electric charge Qe = ±2:

φ+
e = χ+

↑χ+
↓ , φ−

e = χ−
↓ χ−

↑ . (66)

Using the commutation relations of the SO(5) charges with the χ -fields, one finds that the
five order parameters

�� = (
φx, φy, φz, φ

+
e , φ−

e

)
(67)

transform under the five-dimensional vector representation of SO(5). For instance[
Q+

↑↑, φ−
e

] = 2φ− and
[
Q+

↑↑, φ+
] = 2φ+

e . The ordering of fermionic operators was chosen

such that ( ��)†c = ��, more precisely �φ†c = �φ and
(
φ+

e

)†c = φ−
e , which guarantees that vacuum

expectation values of �φ are real and those of φ±
e are complex conjugates. An SO(5) invariant

is the following:

�� · �� ≡ φ+φ− + φ−φ+ + φ2
z − φ+

e φ−
e − φ−

e φ+
e . (68)

Finally, the interaction Lagrangian density equation (46) can be expressed as

Lint = 8π2g

5
�� · �� = −8π2gχ−

↑ χ+
↑χ−

↓ χ+
↓ . (69)

5.5. Low-energy fixed point

The Feynman rules for the theory are the same as for a Lorentz-invariant scalar with φ4

interaction, which in practice is quite simple [5, 26], except for some all important minus
signs. In the following we mainly work in Euclidean space t → −it , since this simplifies
solving the gap equations and is also appropriate for finite temperature. Where appropriate
we will return to real time (Minkowski space) for certain physical quantities. In particular, the
propagators in Euclidean space are〈

χ−
α (x)χ+

β (0)
〉 = −〈

χ+
α (x)χ−

β (0)
〉 = −δαβ

∫
dDp

(2π)D
e−ip·x 1

p2 + m2
, (70)

where D = d + 1, and they respect causality. In the usual Euclidean conventions the 4-vertex
for the interaction in (46) is −4π2g. (See figure 9.)

Our RG prescription will be specialized precisely to 2d and is described in detail in
section 13 after some 1-loop diagrams are explicitly calculated. In order to obtain a clear
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physical picture, it will turn out to be important to carry out the RG directly in 2d. However,
the RG can also be studied perturbatively in an epsilon expansion around d = 3. For future
reference we summarize the main results obtained in [17, 18] from the epsilon expansion. We
will not use these results very much in the sequel; they are included as a guide to the sign and
strength of the anomalous corrections to scaling. Since the perturbative expansion differs from
that of bosonic scalars only by fermionic minus signs, the standard methods for the bosonic
O(M) vector models apply. Specifically, these are models of an M-vector of scalar fields �φ
with interaction ( �φ · �φ)2. In D = d + 1 = 3, the low-energy theory is the Wilson–Fisher
fixed point [27] describing classical 3d magnets. The anomalous dimensions of the most
important operators were computed to 2-loops in [18]. As it turns out, most of the results can
be obtained from known results for the O(M) models analytically continued to M = −2N .
Besides the χ field itself and mass term χ−χ+ (which will be the thermal perturbation), an
additional important class of operators are the bilinears that correspond to order parameters,
in particular the �φ of the SO(5)-order parameters when N = 2, of the form χ− �σχ+ where
�σ is a Pauli matrix. These have no analog that is known to be physically meaningful for the
O(M) models. It should be emphasized that the quantum critical exponents of our N = 2
model are completely unrelated to the usual Wilson–Fisher exponents of the bosonic O(3)

model, since here the O(3) vector is a composite bilinear operator and its scaling dimension
must be calculated in the fundamental χ -theory.

Let [[X]] denote the scaling dimension of X in inverse length, i.e. energy units. One can
also define a correlation length exponent based on the mass m:

ξ ∼ m−ν, (71)

where ν = 1/[[m]]:

ν−1 = (d + 1 − [[χ−χ+]])/2. (72)

Specializing the results in [18] to N = 2 and 2d one obtains

[[χ ]] ≈ 15
32 , [[χ−χ+]] ≈ 5

8 , [[χ− �σχ+]] ≈ 3
2 , ν ≈ 16

19 . (73)

Note that whereas χ−χ+ decreases in dimension from the classical value 1, χ− �σχ+ increases.
Some remarks concerning the d = 1 case are again appropriate. It is well known that the

low-energy fixed points of the bosonic O(M) vector models do not extend down to d = 1, i.e.
D = 2. For general M this can be viewed as a manifestation of the Mermin–Wagner result
[29], which states that spontaneous symmetry breaking in a D-dimensional Euclidean field
theory is not possible in D = 2. On the other hand, the models do have a conformally invariant
fixed point for −2 < M < 2 in 2D [28]. Since our N-component symplectic fermion model
is formally equivalent in perturbation theory to O(−2N), this suggests that our models do not
extend to d = 1 except possibly for −1 < N < 1. This helps to explain why for instance it
has never been considered before in connection with lattice fermion models in 1d.

6. Resistivity in the normal state

In this section we give a rough calculation of the temperature dependence of the conductivity
when the interactions are negligible. The rigorous study of this question requires a full finite-
temperature treatment of the Kubo formula, which is known to be quite subtle, and therefore
beyond the scope of this paper. We hope to return to this in a future work, however in this
section we present the following non-rigorous scaling argument.
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Start with a version of the zero-temperature Kubo formula

σij (q, ω) = 1

ω

∫ ∞

0
dt eiωt

∫
d2x e−iq·x〈[Ji(x, t), Jj (0)]〉, (74)

where i, j = x, y are the spatial components of the currents Jμ given in (60).
It is well known that the frequency ω = 0, which corresponds to the DC conductivity, is

a delicate limit. Let us first set ω = 0 in the integrand. Using the propagators in equation (70)
one finds ∫

dt

∫
d2x 〈χ−∂μχ+(x)χ−∂νχ

+(0)〉 =
∫ �c

0

d3p

(2π)3

pμpν

p4
, (75)

where we have set m = 0. The above integral is proportional to �c. Since the conductivity
σ is dimensionless in 2d, one must have that it is proportional to �c/T where T is the
temperature. For reasons that are unclear, this apparently amounts to setting the overall 1/ω in
equation (74) equal to T. Taking into account the two spin components, and the four terms of
the above form, one obtains

σxx = 4

3π2

�c

T
. (76)

Therefore, the resistivity (1/σ) is linear in the temperature T.

7. Thermal perturbations and anomalous specific heat

The parameters of our model thus far are the Fermi velocity vF , which we have set equal to
1, the cut-off �c, the coupling g and the infrared regulator mass m. The Fermi energy εF can
be viewed as implicit in the cut-off if the latter is taken to be the frequency ωD = vF kF . The
density of the free electron gas is only a function of kF :

N

V
= 2

∫ kF

0

ddk

(2π)d
= 4πd/2

�(d/2)
kd
F . (77)

Thus, the density can be varied by varying the cut-off, and since g is proportional to the cut-off
in 2d, equivalently by varying g. (See the discussion of the RG in section 13.)

In this section we suggest how to introduce a small non-zero temperature as the mass
m. This is similar to how temperature appears in the Landau theory for continuous phase
transitions in O(M) magnets [30], where there also temperature corresponds to a coupling
in an effective action. However, there are some important differences, since in the latter the
coupling is T − Tc, whereas here it will be proportional to T 2. Since we have built our model
by expanding around the zero-temperature Fermi surface, it is not obviously consistent to
incorporate a finite temperature by starting over and formulating a finite-temperature version
of the χ fields with Matsubara frequency summations, ignoring that they are effective fields.
Rather, since a small non-zero temperature amounts to a small distortion of the Fermi surface,
it could correspond to an additional coupling in the Lagrangian. If this is correct, then it should
be possible to obtain known results in the limit where the interaction is turned off. Suggestive
of this possibility is the fact that in natural units the leading contribution to the specific heat of
a degenerate electron gas can be expressed entirely in terms of kF and T, i.e. the dependence
on the electron mass is only through the Fermi velocity vF = kF /m∗. We emphasize that this
way of introducing temperature is expected to be valid for temperatures near zero, and cannot
replace a full-fledged finite-temperature formalism at arbitrary temperatures. It will however
be useful for exploring the temperature dependence of low-temperature gaps in the sequel.
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In Euclidean space, introducing a finite temperature T is known to correspond to
compactifying the Euclidean time to a circle of circumference 1/T . Let us consider adding a
thermal perturbation to the Euclidean action of the form

δS =
∫

dt ddx gT OT (x), (78)

where gT is a coupling and OT is the ‘thermal operator’. Since the Euclidean functional
integral is over e−S , the correction to the free energy F = −T log Z to lowest order in gT is
δF = T gT

∫
dt ddx〈OT 〉. Since the Euclidean spacetime volume is V (D) = V/T , where V is

the spatial volume, one finds

δF

V
= gT 〈OT 〉. (79)

This leads us to identify the thermal perturbation with a mass term:

gT = (αT )2, OT = χ−χ+ ≡
∑

α

χ−
α χ+

α . (80)

The above relation is consistent with dimensional analysis for α, a dimensionless parameter.
The specific heat CV at constant volume is CV = −T ∂2F

∂T 2 . Since the propagator goes as −1/p2

as m → 0 (see equation (70)) one has

〈OT 〉 =
∑

α=↑,↓

〈
χ−

α χ+
α

〉 = −2
∫ �c

0

dDp

(2π)D

1

p2
, (81)

where a factor of 2 comes from spin up and down. If the cut-off �c is equated with the
frequency kF , then this leads to specific heat that is linear in T:

CV

V
= α2T

(d − 1)2d−1π(d+1)/2�
(

d+1
2

) kd−1
F

vF

. (82)

(We have re-introduced the Fermi velocity for the sake of comparison.) The above dependence
on T , kF and vF is the correct one, i.e. it is the same as for a non-relativistic degenerate electron
gas near T = 0. Repeating the standard calculation of the specific heat of the electron gas to
order T/εF (see for instance [30]) for arbitrary d, expressing the result in terms of kF instead
of the density, and requiring the result to match equation (82) fixes the constant α:

α2 = π2(d − 1)�
(

d+1
2

)
3

. (83)

For d = 2, α = π5/4/
√

6 ≈ 1.7. The case d = 1 is noteworthy since α = 0, and will be
commented on below.

The kF dependence of the specific heat in equation (82) is a direct consequence of the
scaling dimension d −1 of OT , which is twice the scaling dimension of χ . When one includes
the quartic interaction, at the low-energy fixed point this scaling dimension has anomalous
corrections and this should lead to anomalous T dependence of the specific heat. The scaling
dimension of OT was computed perburbatively in an epsilon-expansion [17, 18], and the
results summarized in the last section for arbitrary N. For N = 2,OT has scaling dimension
approximately equal to 5/8 in the epsilon expansion.

We can provide a naive estimate of the anomalous T dependence of the specific heat. Let
[[OT ]] denote the scaling dimension of OT . Then if we assume the only effect of the anomalous
corrections is to replace kd−1

F by k
[[OT ]]
F , then since CV /V has scaling dimension d, this requires

CV ∝ T d−[[OT ]]. It is not clear that our previous assumption is correct however, since in general
CV could contain terms mxk

y

F with x + y = d. Nevertheless, using our estimate of 5/8 for
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the dimension of OT , this gives CV ∝ T 11/8. Thus CV /T ∝ T 3/8. Though the exponent 3/8
should perhaps not be taken as very accurate, the general point is that since [[OT ]] is shifted
downward to 5/8 from the classical value 1, this shows that CV /T should vanish as T → 0.
This shift downward is entirely due to a fermionic minus sign [17]. We hope to study this
more carefully in future work.

Finally, it is important to note that the manner in which we have introduced temperature
allows, at least computationally, for phase transitions that break the continuous SU(2) and
U(1) symmetries in d = 2. The Mermin–Wagner result [29] is the statement that spontaneous
symmetry breaking is not possible in a (1 + 1)-dimensional (space plus time) quantum-
mechanical system at zero temperature because of infrared divergences that plague the
existence of Goldstone bosons. An example of such a divergence is in equation (81) for
D = 2. In the Matsubara approach to finite temperature, time is compactified into a circle
of circumference 1/T and the discrete Matsubara frequencies are summed over. Thus the
arguments of the theorem in principle apply to a finite-temperature system in 2 + 1 dimensions
at each Matsubara frequency. On the other hand, in our model temperature appears as a
coupling in the theory, as in classical statistical mechanics in 3d. Furthermore, as discussed
in section 5, our model breaks down in d = 1, since the fixed point is lost, and a manifestation
of this is the vanishing of α in d = 1.

In the following, wherever m is non-zero, it should be thought of as representing a small
non-zero temperature.

8. Mean field analysis

Because of the SO(5) symmetry, the interaction term in the Lagrangian can be expressed in
terms of either the magnetic or electric order parameters:

Lint = −8π2gχ−
↑ χ+

↑χ−
↓ χ+

↓ = 8π2g �φ · �φ/3 = −8π2gφ+
e φ−

e . (84)

This implies that magnetic and SC order may in principle compete. In this section we study
this in mean field approximation.

Introduce auxiliary fields �s, q± coupled to the order parameters with the action:

Saux =
∫

dt ddx

(√
2�s · �φ − 1

8π2gs

�s · �s + q+φ−
e + q−φ+

e − 1

8π2gq

q+q−
)

. (85)

Variations δSaux = 0 imply

q± = 8π2gqφ
±
e , �s = 8π2gs

�φ/
√

2. (86)

Plugging this back into the action, one finds that the interaction is recovered if

gq − 3gs/2 = −g. (87)

The effective action for the auxiliary �s, q± fields follows from performing the fermionic
Gaussian integrals over the χ fields. Let us pass to Euclidean space with the usual prescription
t → −it, iS → −S. We will refer to the D = d + 1 Euclidean coordinates as simply x. Then
the effective action Seff is defined as

e−Seff(s,q) =
∫

Dχ e−Saux(χ,s,q)−Sfree(χ), (88)

where Sfree is the free action for the χ fields. The result is

Seff =
∫

dDx

(
1

8π2gs

�s · �s +
1

8π2gq

q+q−
)

− 1

2
Tr log A, (89)
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where the operator A is a differential operator that depends on �s, q±. For constant �s and
q±, the Tr log A can be computed in D-dimensional Euclidean momentum space since the
derivatives are diagonal: 〈p|∂|p〉 = ip〈p|p〉. For constant fields it is meaningful to define
the effective potential Veff = Seff/V (D), where V (D) is the D-dimensional volume. At finite
temperature for instance V (D) = Vβ, where V is the usual d-dimensional volume and β is the
inverse temperature. Using 〈p|p〉 = V (D)/(2π)D , one obtains

Veff = 1

8π2gs

�s · �s +
1

8π2gq

q+q− − 1

2

∫
dDp

(2π)D
Tr log A(p). (90)

In the basis
(
χ−

↑ , χ+
↑ , χ−

↓ , χ+
↓
)

the anti-symmetric matrix A is the following:

A(p) =

⎛⎜⎜⎜⎝
0 p2 + m2 − sz q+ −√

2s−

−p2 − m2 + sz 0
√

2s+ −q−

−q+ −√
2s+ 0 p2 + m2 + sz√

2s− q− −p2 − m2 − sz 0

⎞⎟⎟⎟⎠ . (91)

Using Tr log A = log DetA, one finds

Veff = 1

8π2gs

�s · �s +
1

8π2gq

q+q− −
∫

dDp

(2π)D
log((p2 + m2)2 + q+q− − �s · �s). (92)

The gap equations follow from setting the variation of Veff with respect to �s and q±

separately equal to zero. The result is the following for m = 0:

�s = −8π2gs

∫
dDp

(2π)D

�s
p4 + q+q− − s2

,

q± = 8π2gq

∫
dDp

(2π)D

q±

p4 + q+q− − s2
.

(93)

There is no simultaneous solution with both q± and �s non-zero unless one fine tunes to the
SO(5)-invariant point gs = −gq . In fact, there is no true competition between AF and SC
order in these equations, and the distinction between gs and gq is somewhat fictitious, since
for one sign of the coupling there are AF solutions and no SC solutions, and vice versa if the
sign is flipped. We thus consider solutions with either pure SC order (s = 0) or pure magnetic
order (q = 0). To further clarify the structure of the gap equation in the sequel, let us separate
the spatial and temporal parts of the D-dimensional momentum vector p as p = (ω, k). (This
notation is different from that of section 2 where there k was a physical momentum; here and
henceforth it is relative to the Fermi surface.) We also restore the mass m. For pure SC order
one then obtains the gap equation

1 = 8π2gq

∫
dω ddk

(2π)d+1

1

(ω2 + k2 + m2)2 + q2
, (94)

where q+ = q− = q. For pure magnetic order one instead has

1 = −8π2gs

∫
dω ddk

(2π)d+1

1

(ω2 + k2 + m2)2 − s2
. (95)

It is important to note the asymmetry in the signs of the above SC versus magnetic gap
equations, which is ultimately traced to the signs in the SO(5) invariant (68). Thus, although
the model has an SO(5) symmetry that rotates the SC and magnetic order parameters, the
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gap equations are not invariant under the exchange of s and q. This implies that the AF gap
is related by symmetry to a conventional s-wave gap obtained when one flips the sign of the
coupling, described in the following section.

Let us now consider the implications of Goldstone’s theorem. A non-zero vacuum
expectation value in any one direction of the 5-vector �φ preserves an SO(4) subgroup of
SO(5). Since dim(SO(5)) − dim(SO(4)) = 4, there are potentially four Goldstone bosons.
One of these is associated with the U(1), and when coupled to the electromagnetic field is
eaten up by the Anderson–Higgs mechanism. This leaves a spin-1 triplet of Goldstone bosons
associated with the 3-vector �φ, and these are the closest thing to spinons in our model. The
effective theory for these modes follows from the above effective potential (92) for �s. For
non-constant fields it contains the kinetic energy term ∂μ�s · ∂μ�s.

9. Conventional s-wave superconductivity in 3d for attractive interactions

It is well understood that a gap that spontaneously breaks the U(1) symmetry in the presence of
electromagnetic gauge potential automatically has the characteristic electromagnetic properties
of a superconductor, i.e. Meissner effect, etc. This precursor to the Higgs mechanism can be
understood in the original Ginzburg–Landau theory [31]. A clear explanation of this can be
found in Weinberg’s book [5].

We are primarily interested in positive coupling g since this corresponds to repulsive
interactions. (In the following section we describe how this should correspond to the positive
U Hubbard model.) However, as a check of our formalism thus far, let us consider attractive
interactions, i.e. negative g, or negative U Hubbard, which should reveal the usual s-wave SC
instability of the BCS theory. As our analysis shows, symplectic fermions give a proper field
theoretic description of conventional s-wave superconductivity which has not been considered
before.

As expected there is no s-wave superconductivity for positive g since the coupling gq is
negative and the gap equation of the last section has no solutions. For pure SC at negative g,
equation (87) then implies gq = −g is positive. Specializing to d = 3 one should recover
some of the basic features of the BCS theory. The gap equation reads

4

gq

= log
(
1 + �4

c

/
q2). (96)

As the cut-off goes to infinity, the divergence can be absorbed into the coupling by
defining 1/gq(�c) = log �c. This gives the 1-loop correction to the RG beta-function:
β(gq) = −dgq/ log �c = g2

q and is consistent with the results in [17, 18]. A more complete
RG prescription will be described in section 13 where 1-loop diagrams are computed. Note
also that positive gq is marginally relevant, i.e. gq increases as the energy is lowered. Since q
has dimension 2, let us define a gap � = √

q with units of energy. When the cut-off is large
compared to � the solution to the gap equation is approximately

� = √
q = �c e−1/gq (97)

which is characteristic of the BCS theory, i.e. � vanishes as gq goes to zero, and saturates at
the cut-off when gq goes to infinity. The zero-temperature gap as a function of gq behaves as
in figure 6.

Let us now restore the infrared regulator mass m and confirm the idea that it can be viewed
as proportional to the temperature, as long as the latter is close enough to zero. As described
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Figure 6. s-Wave gap as a function of the coupling.
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Figure 7. s-Wave gap as a function of the mass m.

in section 7, m = αT where α = π
√

2/3 in 3d. Restoring the mass, the gap equation now
reads in 3d

1

g
= 1

4
log

(
q2 +

(
m2 + �2

c

)2

q2 + m4

)
+

m2

2q

[
tan−1(m2/q) − tan−1 ((

m2 + �2
c

)/
q
)]

. (98)

When m is too large, the rhs can go through zero and change sign, at which point the solution
is lost. Numerical solutions of the gap � as a function of m is shown for several values of g

in figure 7.
Let mc(g) denote the value of m where the gap disappears. Then, one expects the critical

temperature to be given by a formula of the form

Tc = mc

α
= cg

α
�0, (99)
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Table 1. Critical mass versus zero temperature gap.

g �0/�c mc/�c cg = mc/�0

0.5 0.135 0.083 0.61
1.0 0.370 0.235 0.64
2.0 0.629 0.440 0.70
4.0 0.873 0.660 0.76

10.0 1.19 0.99 0.83
20.0 1.46 1.27 0.87

100.0 2.22 2.09 0.94

where �0 is the gap at m = 0 and cg is a constant of order unity. This is similar to the
relation in the BCS theory where Tc ≈ �0/1.76. The constant cg = mc/�0 can be estimated
numerically and shows a weak dependence on g, as table 1 shows.

10. Anti-ferromagnetic phase (Mott–Hubbard insulator)

10.1. Symplectic fermions from the Hubbard model at half-filling

As stated in the introduction, one cannot derive our model by taking a direct scaling limit of
a lattice fermion model like the Hubbard model; this should be clear from the fact that they
have different symmetries, i.e. SO(4) versus SO(5). The main reason for this is that one
needs to take special care of the Fermi surface in taking such a continuum limit. Nevertheless,
we can further motivate our model by comparison with lattice models as follows. Since our
model has no explicit lattice, the meaning of the �s · �s �= 0 phase can only be understood by
comparing with low-energy, continuum descriptions of magnetism. It is well known [32, 35]
that excitations above the anti-ferromagnetic Néel state of the Heisenberg model are described
by the nonlinear O(3) sigma model. The basic facts about lattice models we need for this
discussion are collected in appendix B. Since the �n field corresponds to our O(3) vector of
order parameters �φ in equation (65), let us use that notation.

At half-filling and strong coupling, the Hubbard model can be mapped to the Heisenberg
model and the order parameter �φ is constrained to have fixed length �φ · �φ = constant. In our
model, the magnetic order parameter can be expressed as

�φ = 1√
2
χ− �σχ+, (100)

where �σ are the Pauli matrices. A fixed length constraint on �φ is equivalent to a similar
constraint on the χ ’s. Using

�σij · �σkl = 2δilδjk − δij δkl, (101)

one can show

�φ · �φ = − 3
2 (χ−χ+)2, (102)

where χ−χ+ = ∑
α=↑,↓ χ−

α χ+
α . Therefore, if one imposes

χ−
↑ χ+

↑ + χ−
↓ χ+

↓ = ih�c (103)

for some constant h, then �φ · �φ = 3h2�2
c

/
2. (The i is consistent with the propagators in

Minkowski space.)
At half-filling there is a simple argument that leads to symplectic fermions. Imposing the

above half-filling constraints in the Lagrangian:

∂ �φ · ∂ �φ = 4ih�c(∂χ−∂χ+) + irrelevant operators, (104)
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where the additional irrelevant operators can be expressed in terms of dimension 4 current–
current interactions JμJμ. Thus, due to the second-order nature of the nonlinear sigma model,
one obtains a fermionic theory that is second order in space and time derivatives. Furthermore,
let us recall now that we showed in sections 2 and 3 how symplectic fermions also arise when
one expands around a circular Fermi surface. Since for lattice fermions the nearly circular
Fermi surface occurs inside the half-filling diamond, this shows how symplectic fermions can
actually extend below half-filling. Above half-filling (electron rather than hole doping) the
same formalism applies where now one expands around the circular Fermi surface centered
on the node k = (π, π).

Relaxing constraint (103) moves us away from half-filling. A meaningful measure of the
degree of filling that we will utilize in the sequel is the following. Specializing formula (81)
to 2d in Euclidean space and with cut-offs, one finds to zeroth order:

h ≡ − 1

�c

〈χ−χ+〉 = −2
∫ �c

�

d3p

(2π)3

1

p2
= 1

π2

(
1 − �

�c

)
. (105)

Thus, increasing �/�c corresponds to lowering the density below half-filling, so that h is a
measure of hole doping. We will return to this point when we analyze the phase diagram as a
function of doping in section 14, and will also include 1-loop corrections.

The coupling g should be proportional to the Hubbard coupling U (see appendix B). It
can be estimated below half-filling near the circular Fermi surface. From the lattice kinetic
energy equation (14), ε(k) ≈ ta2k2 for small k, which gives a Fermi velocity vF = 2ta2kF .
Since g has inverse length units, U = vF g has units of energy. This gives

g = U

2t (kF a)

1

a
, (106)

where a is the lattice spacing.

10.2. Solutions of the gap equation

We now study the solutions of the pure AF order gap equation (95) at m = 0, which should
correspond to zero temperature. Because of the two additional minus signs in the AF gap
equation in comparison with the attractive SC one studied in the last section, the interpretation
of its solutions is somewhat subtle, and perhaps the most delicate point in this whole paper.
First of all, the gap equation definitely has solutions for gs positive due to the two compensating
minus signs. However, because of the pole at p4 = s2 we require that s > �2

c where �c is the
upper momentum cut-off. A proper understanding of the solutions requires the introduction
of both UV and IR cut-offs and to implement the RG directly in 2d. The precise description
of our RG prescription is postponed until we calculate some explicit Feynman diagrams and
is described in section 13.

When gq = 0 equation (87) gives the relation between g and gs and they are both
positive. However, the resulting relation is purely classical and specific to the auxiliary field
construction. Instead we fix the relation between gs and g by requiring consistency with the
perturbative RG. To lowest order this requires gs = 2g, in order for equation (110) to be
consistent with equation (141). The gap equation now reads

1

g
= −8

∫ �c

0
dp

p2

p4 − s2
. (107)

Let us define

s = δ2
s �

2
c . (108)

27



J. Phys. A: Math. Theor. 42 (2009) 025402 E Kapit and A LeClair

The result of doing the integral is

�c

g
= 4

δs

(
1

2
log

(
δs + 1

δs − 1

)
− tan−1 1/δs

)
. (109)

Since the log-term is positive in the above equation, there are solutions for δs > 1. In fact,
when the coupling is lowered, the log-term dominates, and the solution approaches δs = 1+

and remains there for arbitrarily small g. This behavior is not physically sensible since the gap
should vanish as the coupling g vanishes. To resolve this puzzle, first note that when s = 0
the gap equation has IR divergences that need to be regulated. Let us therefore introduce a
low-energy cut-off �. Setting s = 0 in equation (107), the result can be written as

1

g
+

8

�
= 8

�c

. (110)

The left-hand side is precisely an expansion of the running coupling g(�), since by
equation (137), 1/g(�) ≈ (1 + 8g/�)/g. Denoting the solution as gAF,

gAF(�) = �c

8
. (111)

Our interpretation of this value of the coupling gAF is that s should vanish for g < gAF since
s = 0 is a consistent solution at g = gAF.

The value of the coupling gAF is closely related, but not the same as the low-energy fixed
point value of g. (See in section 13.) Namely, at 1-loop the fixed point is at g∗ = ĝ∗�
where ĝ∗ = 1/8, thus the low-energy fixed point occurs at g∗ = �

�c
gAF. As we will see,

the low-energy quantum critical point at g∗ is a second-order continuous phase transition
that terminates the super-conducting phase on the over-doped side. This leads us to propose
that the termination point gAF of the AF phase is a first-order transition, i.e. the gap drops
discontinuously to zero.

Let us now return to solutions of the gap equation with s �= 0. The solution in
the two asymptotic limits g/�c → 0,∞ have simple expressions. It is useful to use
the identity 1

2 log(δs + 1)/(δs − 1) = tanh−1 1/δs . When g → ∞, δs is large. Using
tanh−1 1/δs − tan−1 1/δ ≈ 2

/(
3δ3

s

)
, one obtains

δs ≈
(

8g

3�c

)1/4

, (g/�c → ∞). (112)

As g decreases, δs saturates to 1 since the argument of the tanh−1 must be less than
1 otherwise the solution is complex. Where the solution starts to flatten out can be
approximated by extrapolating equation (112) down to δs = 1, i.e. around g/�c = 3/8.
Using tanh−1 1/δs ≈ 1

2 log(2/(δs − 1)) when δs ≈ 1, one obtains

δs ≈ 1 + 2 e−�c/2g, (g/�c < 3/8). (113)

This behavior is shown in figure 8 where we have incorporated the drop to zero at gAF.

11. d-Wave gap equation in 2d

In the last section we derived gap equations in the approximation that the gap has no momentum
dependence. This is essentially equivalent to assuming the lowest-order scattering of pairs is
momentum independent. In appendix A we show how to incorporate momentum-dependent
scattering and derive the following form of gap equation:

q(k) = −
∫

dω ddk′

(2π)d+1
G(k, k′)

q(k′)
(ω2 + k′2)2 + q(k′)2

, (114)
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g
Λc

δs

gAF
Λc

≈ 1
8 ∼ 3

8

∼ 1.28 (g/Λc)1/4

1

Figure 8. Solutions to the anti-ferromagnetic gap equation.

where the kernel G is given by a Green function related to the scattering of pairs with momenta
±k and ±k′. We have set the mass m = 0; it can be restored by ω2 → ω2 +m2. (As explained
in appendix A, q(k) is not simply the Fourier transform of q(x).)

For our model the kernel will be computed to 1-loop in the following section. In this
section we analyze the orbital properties of the gap in 2d in a model-independent way based
only on the structure of the gap equation and its symmetries. Similar arguments apply to a
BCS type of gap equation.

Let us assume that G is symmetric, G(k, k′) = G(k′, k). If G is also rotationally invariant,
then its angular dependence arises only through the dependence on k · k′ = kk′ cos(θ − θ ′).
The kernel and gap can thus be expanded as follows:

G(k, k′) =
∞∑

�=0

G�(k, k′) cos �(θ − θ ′)

q(k) =
∞∑

�=0

q�(k) cos �θ.

(115)

Substituting the above expansions into the gap equation one sees that due to the
nonlinearity different � can mix. For simplicity consider a single channel, i.e. assume G
has only one term in its expansion at fixed �. The angular integral

∫
dθ ′ can be performed and

turns out to be independent of �:∫ 2π

0
dθ

cos2 �θ

1 + a cos2 �θ
= 2π

a
(1 − (1 + a)−1/2). (116)

The result is

q�(k) = − 1

(2π)2

∫ ∞

−∞
dω

∫ ∞

0
dk′ k′G�(k, k′)

1

q�(k′)

⎛⎝1 − ω2 + k′2√
(ω2 + k′2)2 + q2

� (k
′)

⎞⎠ . (117)

It is important to note that although G(k, k′) varies in sign due to the oscillating cosine,
the sign of G�(k, k′) is meaningful and determines whether the � channel is attractive or
repulsive. Negative G� corresponds to an attractive channel. Furthermore, any � = 0, 1, 2, . . .

is in principle allowed.
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The channel � = 2 can arise rather naturally from a term in the kernel of the form
−2g2(k · k′)2 = −g2k

2k′2(1 + cos 2θ) for g2 a constant, which gives rise to both � = 0, 2
with the same sign. As we will show in the following section, for our model � = 2 is the first
attractive channel. In particular, G2 has the form

G2(k, k′) = −8π2g2k
2k′2 (118)

with g2 a positive constant which we will calculate in the following section. This leads to a
solution of the pure d-wave gap equation of the form

q(k) = δ2
qk

2 cos 2θ = δ2
q

(
k2
x − k2

y

)
, (119)

where δq is a constant satisfying the integral equation:

δ4
q = 2g2

∫ �c

0
dω dk2

⎛⎝1 − ω2 + k2√
(ω2 + k2)2 + δ4

qk
4

⎞⎠ . (120)

The dependence on k for � = 2 is of the same form as a particular linear combination of � = 2
spherical harmonics in 3d, thus we refer to it as dx2−y2 , or simply d-wave, as in the literature;
� = 0, 1 can be referred to as s- and p-wave.

The above gap equation has some interesting properties, in particular, δq = 0 when g2 is
too small. Since this kind of gap equation must be regularized in the UV, we are led to define

g2 = ĝ2

�3
c

, (121)

where ĝ2 is dimensionless. To estimate the lowest value of ĝ2 with non-zero gap, the integrand
in the above equation can be expanded in powers of δq . Keeping terms of order δ8

q , one finds
that for δq small it behaves as

δq ≈
[

a

a′

(
1 − 1

aĝ2

)]1/4

, (122)

where

a = (8 + π − 8 log 2)/12, a′ = 3(104 + 5π − 128 log 2)/384. (123)

Thus,

δq = 0 for ĝ2 <
1

a
≈ 2.15. (124)

For ĝ2 large, one finds

δq ≈ (2̂g2)
1/4. (125)

However, as we will explain in section 14, there will also be an upper threshold that comes
about when the RG is properly implemented, and this leads to an SC dome.

12. 1-Loop scattering and the gap equation kernel

12.1. Feynman diagrams

In this section we derive the kernel for our model and show that it has an attractive d-
wave channel. Let G(4)(p1, p2, p3, p4) denote the 4-particle vertex function with the overall
(2π)Dδ(D)(p) removed. (Apart from this overall factor, G(4) differs from �(4) in appendix A
by an overall sign since the Feynman rule vertex is defined to be negative in Euclidean space.)
The arrows in the figure indicate how the flavor indices α, β = 1, . . . , N are contracted. They
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p1,α

p2,β
p4,β

p3,α

= −4π2g

Figure 9. Interaction vertex.

+ +

2 N 1 1

Figure 10. 1-Loop Feynman diagrams with group theory factors.

also indicate the flow of charge since the interaction is proportional to
(∑

α χ−
α χ+

α

)2
. This

structure is shown in figure 9, which indicates the interaction of the Euclidean space Feynman
rules.

The 1-loop contributions to G(4) are displayed in figure 10 and consist of three separate
channels which differ in how the α, β flavor indices are contracted and also in their momentum
dependence. It is interesting to carry out this part of the calculation for arbitrary N. The
Sp(2N) group theory factors are 2 − N, 1, 1, respectively, for the three diagrams, where the
−N dependence comes about from the closed loop and a fermionic minus sign.

To this order, one thus has

G(4)(p1, p2, p3, p4) = 4π2g − 2(4π2g)2[(2 − N)f
(
p2

13

)
+ f

(
p2

12

)
+ f

(
p2

14

)]
, (126)

where pij = pi + pj and f is the function:

f (p2) =
∫

dD�

(2π)D

1

[�2 + m2][(� + p)2 + m2]

=
∫

dD�

(2π)D

∫ 1

0
dx

1

[�2 + x(1 − x)p2 + m2]2
. (127)

Since we are interested in low energies, it is meaningful to expand the integrand in powers
of p2/�2. At zero temperature, we can also set m = 0. One finds

f (p2) =
∫

dD�

(2π)D

1

�4

(
1 − 1

3

p2

�2
+

1

10

p4

�4
+ · · ·

)
. (128)

As explained in appendix A, the gap equation kernel is obtained by specializing to pairs of
opposite momenta. We thus fix

p1 = −p2 = p, p3 = −p4 = p′. (129)

There are also two inequivalent ways in which to contract the vertex with external legs which
leads us to define

G(p, p′) = G(4)(p,−p, p′,−p′) + (p′ → −p′). (130)
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The momentum-independent part is the following:

G(p, p′)|p,p′=0 = 8π2g − 64π4g2(4 − N)

[
dD�

(2π)D

1

�4

]
. (131)

The second term in the above equation can be absorbed into a redefinition of the coupling g.
It in fact is just the 1-loop contribution to the RG beta-function and we will return to it in
section 13 where our RG prescriptions will be fixed.

The order p2 term is

G(p, p′)|p2 = 64π4(3 − N)

3
(p2 + p′2)

[
dD�

(2π)D

1

�6

]
. (132)

According to the derivation in appendix A, for static gaps, the kernel G(k, k′) in the gap
equation is simply G(p, p′) with the time components of p disregarded, i.e. p = (0, k). This
implies that though G(k, k′) is closely related to the S-matrix, it is not identical since the
external momenta are not on-shell. The above term is then a repulsive correction to the s-wave
contribution, which is already repulsive at tree level.

Finally, we come to the p4 term:

G(k, k′)|k4 = −32π4(3 − N)

5
((k2 + k′2)2 + 4(k · k′)2)

[
dD�

(2π)D

1

�8

]
. (133)

Using

(k · k′)2 = k2k′2 cos2(θ − θ ′) = k2k′2(cos 2(θ − θ ′) + 1)/2, (134)

one sees that this term gives both s- and d-wave contributions. Whether the channel is attractive
depends on the sign of the factor 3 − N . For N = 2, the above 1-loop s-wave correction is
attractive but since the leading tree-level term is repulsive, it is unlikely that it could lead to
s-wave pairing. The leading contribution to the d-wave term is attractive for N < 3. This is
rather interesting since this d-wave instability is invisible to large N methods. In the following
we will make the approximation of the last section and not consider possible mixing of the s-
and d-wave gaps.

The d-wave term G2(k, k′) is of the form in equation (118) with

g2 = (3 − N)8π2g2

5

∫
d3�

(2π)3

1

�8
. (135)

The gap thus has the characteristic d-wave form in equation (119) where the constant δq is a
solution to equation (120).

13. Renormalization group specifically in 2d

In the present context it is most appropriate to adopt the Wilsonian effective action view of
the RG. In this approach there are two energy scales to consider, a fixed cut-off scale �c and
a running scale � < �c. Integrating out high-energy modes leads to couplings that depend
on the running scale �. Wherever possible, one lets the cut-off �c go to infinity.

For illustration, consider first the contribution of loop modes with � < � < �c to the
momentum-independent part of G in 3d:

G(p, p′) = 8π2

(
g − (4 − N)g2

∫ �c

�

d�

�

)
. (136)

The effect of these high-energy modes is to modify the coupling according to g(�) =
g + g2(4 − N) log �/�c. The beta-function is then −dg/d log � = −(4 − N)g2, in
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Λ

g(Λ)

g∗ = 1
8

Λc

Figure 11. RG flow to 1
8 at low energies from either strong or weak coupling at short distances.

agreement with results in [17, 18]. An equivalent manner to describe this RG prescription
is to let

∫
d� → ∫ �c

�
d� and then set the cut-off �c → ∞ and keep the dependence on the

renormalization energy scale �.
Let us now specialize this to 2d. The momentum-independent part of G is now the

following:

G = 8π2(g − 4(4 − N)g2/�) ≡ 8π2g(�), (137)

where we have sent the cut-off �c to ∞. This gives −dg/dlog � = −4(4 − N)g2/�, which
is consistent with the fact that g has units of energy. The latter is an important feature of our
model, and in order to deal with it, we define a dimensionless coupling ĝ:

g(�) = �ĝ(�). (138)

The beta-function for ĝ is now

−�
d̂g

d�
= ĝ − 4(4 − N)̂g2, (139)

where the linear term just reflects the classical dimension 1 of g. There is a fixed point at

ĝ∗ = 1

4(4 − N)
, (140)

where the above is only approximate due to corrections beyond 1-loop.
The solution to the RG flow equation is then

ĝ(�) = �cĝ0

� + 4(4 − N)(�c − �)̂g0
. (141)

The fixed point value ĝ∗ is reached irregardless of whether the initial coupling ĝ0 at the cut-off
�c is large or small, as long as it is positive. This behavior is sketched in figure 11.

The coupling g2 that enters the d-wave gap equation can now be expressed as

g2 = 4

25

ĝ2

�3
, (142)

where we have safely taken �c to ∞ in equation (135) and set N = 2.
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14. Scaling and global features of the phase diagram

14.1. RG scaling

For the purposes of comparison with real compounds, our model has only two independent
parameters. First is the strength of the coupling ĝ0 at the short distance scale �c. Second is
the overall scale �c. The complete phase diagram falls into place when one takes into account
the RG scaling. Throughout this section it is implicit that we are only working to 1-loop and
all equalities should be taken as approximations.

The structure of the phase diagram is most transparent and the universal features more
clearly revealed if one works with the dimensionless inverse couplings:

x = 1

ĝ
, x0 = 1

ĝ0
, x∗ = 1

ĝ∗
. (143)

Throughout this section we fix N = 2 where x∗ = 8 is the fixed point value. The scale � of
g = �ĝ can now be expressed in a simple way in terms of x using equation (141):

�

�c

= x∗ − x

x∗ − x0
. (144)

The variable x should not be confused with the conventional doping variable in the literature,
although it is closely related; the hole doping is the variable h below. The above linear
relation is specific to 2d and is crucial to understanding the overall structure of the phase
diagram. Since the line �/�c represents the scale of the coupling, below this line energies are
comparable to the coupling and the non-Fermi liquid properties begin to reveal themselves.
We have labeled this region the pseudogap as in the literature and will return to it in
section 16. Note that when x = x0,�/�c = 1.

As we defined them, both the AF and SC gaps δs and δq are in units of the cut-off �c.
Since we have performed an RG transformation of the coupling from �c to �, we must also
scale the gaps as follows:

δ′
q,s = �

�c

δq,s =
(

x∗ − x

x∗ − x0

)
δq,s . (145)

It will also be convenient to define the parameter γ which measures the distance to the fixed
point at short distances:

γ ≡ |x∗ − x0|
x∗

, (146)

where 0 < γ < 1. The AF gap equation (109) should now be solved for δ′
s(x) where g is

replaced by

g

�c

= 1

x

(
x∗ − x

x∗ − x0

)
. (147)

There are two cases to consider depending on whether the coupling ĝ is strong or weak
at short distances, i.e. whether ĝ0 is above or below the fixed point value ĝ∗, corresponding to
the two curves in figure 11, which we will refer to as Type A and B.

14.2. Type A: strong coupling at short distances

Here we assume ĝ0 > ĝ∗ = 1/8, which implies x0 = (1 − γ )x∗. The scale as a function of x
now has negative slope

�

�c

= − 1

γ

(
x

x∗
− 1

)
(148)
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and since the above ratio is by definition less than 1, we have x0 < x < x∗. From
equation (111) the first-order transition that terminates the AF phase corresponds to ĝAF =
ĝ∗�c/� which translates to

xAF = x∗
1 + γ

. (149)

The value xAF is always to the right of x0 since γ 2 > 0.
Let us now turn to the SC phase. The d-wave gap equation (120) depends on g2, which

by equations (121) and (142) can be expressed as

ĝ2 = 4γ 3

25x2(1 − x/x∗)3
. (150)

The d-wave gap equation only has solutions if ĝ2 is positive, which requires x < x∗.
Furthermore, ĝ2 must be above the threshold ĝ2 > 1/a by equation (124). Thus the d-wave
SC gap is non-zero in the range

δq �= 0 for x1 < x < x∗, (151)

where the lower threshold is a solution to

4aγ 3 = 25x2
1(1 − x1/x∗)3. (152)

(The constant a ≈ 0.466 is defined in equation (123).) It should be emphasized that, unlike
the values of x0, xAF and x∗ which are determined by the low-energy fixed point, the value x1

is not universal, i.e. not predicted by the RG itself. Since the solution to the above equation is
close to x∗, one can estimate

x1 ≈ x∗

(
1 − γ

(
4a

25x2∗

)1/3
)

≈ (1 − 0.1γ )x∗. (153)

In principle, it is mathematically possible to have a non-zero solution to the d-wave gap for x
sufficiently small, but this will tend to be small and inside the AF phase.

The transition point xAF is outside the SC dome in the approximation we have made, since
xAF > x1 would require γ > 1. These features, and the geometrical relationships between the
various transition points, are shown in figure 12, which is not drawn to scale since the latter
depends on γ .

In figure 13 we display numerical solutions to the AF and d-wave SC gap equations
for γ = 1. Rough comparison with experimental results suggests the SC dome as we
have calculated it is too narrow, which would imply that we overestimated x1. However, as
stated above, the value of x1 is less universal than x0, xAF and x∗, and could easily change
by improving our approximations, for example taking into account s- and d-wave mixing,
or incorporating other effects we have neglected, such as interplane coupling and disorder.
The important point is that there is both an onset and termination of the SC phase, and the
termination point on the over-doped side is what is universal since it corresponds precisely to
a quantum critical point. Furthermore, since xAF < x1, AF and d-wave SC do not appear to
compete so that the SC is robust.

14.3. Type B: weak coupling at short distances

In this case ĝ0 < ĝ∗ at short distances, and γ = (x0 − x∗)/x∗ where in principle 0 < γ < ∞.
Now the slope of � versus x is positive:

�

�c

= 1

γ

(
x

x∗
− 1

)
(154)
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x0 xAF
x1 x∗

δq

Λ/Λc

δs

AF

pseudogap

SC
x

Figure 12. Global phase diagram for Type A. The slope of the dashed line is − 1
γ x∗ . The

various transition points are related geometrically by x0 = (1 − γ )x∗, xAF = x∗/(1 + γ ) and
x1 ≈ (1 − 0.1γ )x∗, where x∗ = 8. The dashed line represents equation (144).

x

0.5

3.0 4.0 8.07.1

δq

δs

Λ/Λc

Figure 13. Numerical solutions of the AF and d-wave SC gap equations for γ = 1 (Type A).

and x∗ < x < x0. The AF transition point is at

xAF = x∗
1 − γ

. (155)

Thus, 0 < γ < 1 otherwise xAF goes from ∞ to −∞.
There are non-zero solutions to the d-wave gap equation in the range:

δq �= 0 for x∗ < x < x2, (156)
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1

x∗ x2 x0

δs

xAF

Λ/Λc

δq

x

Figure 14. Global phase diagram for Type B. The values shown are related as follows:
x0 = (1 + γ )x∗, xAF = x∗/(1 − γ ) and x2 ≈ (1 + 0.1γ )x∗, where x∗ = 8. The dashed line
has slope 1/(γ x∗).

where x2 is a solution to equation (152) with x1 → x2 and γ → −γ . An approximation of
the form (153) also holds with γ → −γ . With the range of parameters of our model, xAF lies
outside the SC dome, so that the SC dome is completely inside the AF phase. These features
are shown in figure 14.

14.4. Doping: 1-loop corrections and optimal doping

The hole-doping variable h defined in section 10 takes the simple form in terms of the x
variables:

h(x) = 1

π2

(
x − x0

x∗ − x0

)
. (157)

Again, this linear dependence on x is characteristic to 2d. As argued in section 10, since
increasing �/�c decreases the density to below half-filling, h is a measure of doping, where
x = x0 should correspond to half-filling. Thus apart from an overall scale of 1/π2 and a
shift of the origin, our previous phase diagrams in terms of x are effectively in terms of the
doping h.

Since both the AF and SC termination points xAF and x∗ are closely related to the RG
fixed point, the ratio of doping at these two values should be universal. Let hAF = h(xAF) and
h∗ = h(x∗). Expressed in terms of γ one has

hAF = 1

π2

γ

1 + γ
, h∗ = 1

π2
, (158)

which gives the ratio hAF/h∗ = γ /(1 + γ ).
The above formula for h is from equation (105) where only the zeroth-order contribution

was calculated. We can easily include the first-order correction in g, which is the 1-loop
self-energy diagram shown in figure 15. This leads to the following correction:

h = 2

�c

∫ �c

�

d3p

(2π)3

(
1

p2
+

4g(�c − �)

p4

)
. (159)
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+ = 1
p2 + 8π2g

p4
Λc

Λ
d3

(2π)3
1
2

Figure 15. 1-Loop correction to the propagator.

There is an important fermionic minus sign in the above expression coming from the fermion
loop. Expressing the result of doing the above integral in terms of x using equation (144) one
obtains

h(x) = 1

π2

(
x − x0

x∗ − x0

)[
1 +

4

x

(
x − x0

x∗ − x0

)]
. (160)

The corrections to formula (158) are then

hAF = 1

π2

γ (2 + γ )

2(1 + γ )
, h∗ = 3

2π2
. (161)

The optimal doping fraction can be estimated as follows. Recall that for Type A, the SC
phase occurs for x1 < x < x∗. Evaluating h at the lower limit x1 one finds a weak dependence
on γ :

h(x1) ≈ 1

π2

(
1.3 − 0.09γ

1 − 0.1γ

)
. (162)

One thus concludes that optimal doping occurs in the tight range:

1.3

π2
= 0.13 < hoptimal < 0.15 = 3

2π2
. (163)

This leads to
hAF

hoptimal
≈ γ (2 + γ )

3(1 + γ )
. (164)

For γ = 1/2 this gives hAF ≈ 0.04.

15. Details on the AF and d-wave SC gaps and critical temperatures

In this section we provide detailed numerical solutions to the gap equations for a variety of γ

and also re-introduce the mass to incorporate a temperature.

15.1. AF gap

Numerical solutions to the AF gap equation (109) expressed in terms of x for γ = 1/2 are
shown in figure 16.

To study finite temperature, we introduce a mass m = αT where α = π5/4/
√

6 ≈ 1.7
was introduced in section 7. The gap equation becomes

�c

g
= 4

δ2
s

(√
δ2
s − m̂2 tanh−1 1√

δ2
s − m̂2

−
√

δ2
s + m̂2 tan−1 1√

δ2
s + m̂2

)
, (165)

where m̂ = m/�c. Since we have RG scaled the gaps, in order to make comparisons on the
same scale we need to also define a scaled mass:

m′ = �

�c

m. (166)
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x0 xAF

δs
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Figure 16. Numerical solutions to the AF gap for γ = 1/2, x0 = 4 and xAF = 5.3.

Numerical study of equation (165) shows that the solution δ′
s vanishes when m′ is too

large, consistent with identification of m with temperature, as in conventional superconductivity
discussed in section 9. Let m′

N denote the value of m′ where the solution δ′
s vanishes. This

leads us to define a Néel temperature TN where the gap vanishes. As in the BCS theory, TN is
expected to be proportional to the zero-temperature gap. Let us define then

TN = m′
N

α
= cAF(γ, x)

δ′
s�c

α
, (167)

where

cAF(γ, x) ≡ m′
N(γ, x)

�cδ′
s

(168)

and in these equations δ′
s is the zero-temperature gap. Inspection of the finite-temperature gap

equation (165) shows that the solution should disappear when the argument of the square-root
is negative, i.e. when m̂ ≈ δs , and cAF ≈ 1. This is a delicate limit, however we have verified
that this is approximately correct numerically.

15.2. SC gap

Numerical solutions to the d-wave gap equation (120) expressed in terms of x are shown in
figure 17 for γ = 1

4 , 1
2 , 3

4 , 1. One sees that the peak value of the gap δ′
q ≈ 0.11 is not very

sensitive to γ .
Let us now introduce a temperature T by letting ω2 → ω2 + m2 in the gap equation (120)

where as before m = αT . The behavior of the gap as a function of T is shown in figure 18 for
γ = 1

4 , 1
2 , 1. Let m′

c denote the value of m where the gap vanishes. One sees from the figure
that here there is a somewhat stronger dependence of mc on the inverse coupling x than for the
AF gap.

The critical temperature Tc can now be defined as

kBTc = m′
c

α
= cSC(γ, x)

α
vFh̄δ′

q�c, (169)

where

cSC(γ, x) = m′
c

�cδ′
q

(170)
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Figure 17. Numerical solutions of the d-wave gap equation for γ = 1
4 , 1

2 , 3
4 , 1.

m /Λc

δq(m )

0.1

0.1

γ = 1

γ = 1/4

Figure 18. d-Wave gap as a function of m for γ = 1/4, 1/2, 1.

is a dimensionless constant. In this final formula, we have restored fundamental constants
and the Fermi velocity vF . Above, δ′

q is the zero-temperature gap, which depends on γ, x as
does m′

c.
Let xopt denote the value of x with the largest gap. The constant cSC for various γ at the

corresponding xopt are shown in table 2. One sees that cSC is of order 1 and has only a weak
dependence on the couplings.

We can estimate now the critical temperature at optimal doping. The above table shows
that cSC depends relatively weakly on γ . Furthermore, δ′

q at optimal doping is also relatively
constant ≈0.11. Thus the scale of the critical temperature (169) is set primarily by vF

and �c, i.e. it is only weakly dependent on the coupling g or the Hubbard couplings by
equation (106); this is the beauty of having a low-energy fixed point. The scale �c = 1/a is
an inverse length a, which should be on the order of the lattice spacing.
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Table 2. Critical mass versus zero temperature gap for various γ .

γ xopt δ′
q (xopt) m′

c/�c cSC = m′
c/δ

′
q�c

1 7.5 0.118 0.06 0.51
3/4 7.6 0.116 0.06 0.52
1/2 7.8 0.114 0.07 0.61
1/4 7.9 0.113 0.08 0.71
1/8 7.94 0.113 0.06 0.53
1/16 7.97 0.113 0.06 0.53

To give a rough estimate of Tc, let us take the lattice spacing to be that of the CuO2

square lattice a = 3.8Å. For vF we use the universal nodal Fermi velocity from [20], which
we estimated to be vF ≈ 210 km s−1 in section 3 for LSCO. The most unknown quantity is α

that sets the relation between temperature and mass; let us use the estimate of α = π5/4/
√

6
from section 7. With the average values δ′

q = 0.11, cSC = 0.6, from the above table, this
gives Tc ≈ 140 K, which is quite reasonable considering all of the order 1 constants we have
approximated. Note that this result relies on the relatively small value of δ′

q we found from
numerical solutions of the d-wave gap equation; a value δ′

q of order 1 would give Tc higher by
an order of magnitude.

A useful form of the above equation for Tc is

Tc = cSC
vF

a
· 650 K, (171)

where we have set α to its estimated value α = 1.7, a is the lattice spacing in angstroms, and
vF is in ev-angstroms. For the range of cSC shown in the above table, 120 K < Tc < 160 K.
The maximum Tc occurs around γ = 1/4. Since this Tc is on the high side, this is perhaps
because we underestimated α in our simplified inclusion of temperature. Another possibility
is that �c should instead be set by the average separation of holes. At doping h = 0.15 this
increases a by a factor of about 2.6 leading to 46 K < Tc < 62 K.

The above formula gives some hints on how to increase Tc: shorten the lattice spacing,
increase the Fermi velocity by somehow modifying the effective electron mass m∗, or tuning
the material to γ = 1/4, which would require screening the Coulomb potential at short
distances. In particular, Tc should increase with pressure if the main effect of higher pressure
is to reduce the lattice spacing.

16. The pseudogap region

It is often suggested in the literature that the pseudogap is the key to understanding high Tc

since the AF and SC order condense out of it, and there has been much speculation about its
nature. (For a review of the experimental data see [33].) In this section we briefly discuss the
insights on the pseudogap furnished by our model thus far.

As stressed throughout this paper, the essential ingredient is the non-Fermi liquid at higher
temperatures before condensation. The pseudogap is the region where the energy scales are
such that this non-Fermi liquid behavior is visible, i.e. there are strong correlations of the
electrons described by our fields χ , but the energy is not low enough for them to condense
into an AF or SC ordered state. The relevant energy scale is � of the coupling g = �ĝ, thus
it is natural to define a pseudogap temperature Tpg:

Tpg = � = xg(�) = 1

γ

(
1 − x

x∗

)
�c, (172)
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where we have used equation (147). Thus, as defined, Tpg is proportional to the coupling g

and below this scale the order g corrections are relatively large. Tpg corresponds to the dashed
line in the figures of section 14, and this line is seen in measurements of various properties on
the under-doped side. Our model predicts that the Tpg line runs between the top of the AF gap
to precisely the quantum critical point which terminates the SC phase on the over-doped side,
and the experiments support this [33].

Since the dashed line in the figures simply represents the relevant energy scale where
the interactions become strong, it does not represent a phase transition. There are thus no
spontaneously broken SU(2) or U(1) symmetries just below Tpg. The field with non-zero
expectation value is the SU(2) ⊗ U(1) invariant 〈χ−χ+〉 which by equation (105) is related
to �/�c. The spectrum still consists of particles and holes with charge ±e, just strongly
coupled. Any experiment performed at energies comparable to the scale of the coupling g

is sensitive to the quantum corrections in our theory, thus there are a wide variety of probes
of Tpg.

A possible concrete manifestation of the above pseudogap scale is a dynamically generated
mass m at zero temperature, since such a mass is necessarily proportional to �. At
finite temperature this mass will typically lead to thermal suppression factors e−m/T at low
temperatures. This idea will be investigated in forthcoming work.

17. Concluding remarks

To summarize, we have constructed a 2d relativistic model with 4-fermion interactions and
analyzed in detail many of its properties which revealed a striking resemblance with the known
features of high-Tc superconductivity in the cuprates. Apart from the overall scale �c, the
phase diagram can be calculated as a function of a single parameter γ , and gives a very good
first draft of what is observed in experiments. Since these features of the model were outlined
in the introduction, we conclude by summarizing the main theoretical aspects that are new and
responsible for the model’s properties.

• In the approach we have taken for expanding around a circular Fermi surface, there is
essentially a unique non-Fermi liquid in 2d for spin- 1

2 electrons. The requirements of a
local, rotationally invariant quantum field theory in a sense make this theory inevitable.
The rotational invariance is not in conflict with the existence of a lattice if the wavelengths
at low energies are long compared with the lattice spacing, in fact it is already known that
the nonlinear sigma model description of the Heisenberg magnet is rotationally invariant.

• Our model has a low-energy fixed point for the same reason that the O(M) vector models
have the Wilson–Fisher fixed point, since the perturbative expansion differs from the
latter only by some fermionic minus signs. The model is perturbatively tractable since
the low-energy value of the coupling is relatively small ≈1/8, even for arbitrarily strong
interactions at short distances.

• The kind of theory considered here, namely a Lorentz scalar fermion with interactions,
has only recently been considered in this context [17, 18] because it was previously
thought to be inconsistent with the spin-statistics theorem and unitarity. In fact, the free
version arises as Faddeev–Popov ghosts in gauge theory. As explained in [18], since
the theory turns out to be pseudo-Hermitian, H † = CHC, it still defines a unitary time
evolution and has real eigenvalues. The non-interacting theory is actually a perfectly
Hermitian description of particles and holes near the Fermi surface. In this paper we
further elaborated on this issue, noting that the operator C simply distinguishes between
particles and holes. Furthermore, the kinematic constraints coming from the expansion
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around the Fermi surface require eigenstates of H that are also eigenstates of C, and for
such states H is actually Hermitian. Finally, the model is consistent with spin-statistics
since spin is a flavor symmetry and we are still quantizing spin- 1

2 particles as fermions.

• A small non-zero temperature can be introduced as a relativistic mass term in the
Lagrangian. Thus, in Euclidean space, the theory is three-dimensional and spontaneous
symmetry breaking is possible, in accordance with the Mermin–Wagner theorem.

• Our model gives a new quantum field theoretic treatment of conventional s-wave
superconductivity for attractive interactions in 3d and can be extended down to 2d.

• The same model can be motivated from the Hubbard model at half-filling. Thus, the model
can interpolate between the nearly circular Fermi surface just below and up to half-filling.
This analysis shows how to vary the hole doping by varying the cut-offs, or equivalently
the inverse coupling, and leads to a calculable phase diagram. The phase diagram has
some universal geometrical features that depend on the strength of the coupling at short
distances. In order to properly understand the phase diagram, it was essential to recognize
that hole doping was proportional to the inverse coupling and to implement certain RG
scaling relations.

• It was necessary to derive a new kind of momentum-dependent gap equation that
incorporates the scattering of Cooper pairs near the Fermi surface. Only then can one see
that there is an attractive d-wave channel even if the original interactions that led to AF
order were repulsive. This d-wave channel is only attractive for N < 3, so it cannot be
understood using large N methods.

• Although the SO(5) symmetry helps to explain the existence of both AF and SC order
since order parameters for both are present, since the AF gap is s-wave and the SC gap is
d-wave, they are not simply related by symmetry. In particular, the d-wave gap equation
is second order in the coupling g whereas the AF one is first order. What is related by
SO(5) symmetry to the AF phase is a conventional s-wave SC obtained when one flips
the sign of the interaction to make it attractive.

• The pseudogap is the region where the energy scales are comparable to the scale of the
dimensionfull coupling g, but not low enough for the particles to condense.

Our theory certainly reproduces all of the qualitative features of high-Tc materials and
we believe also explains the universal nodal Fermi velocity observed in [20]. On the
quantitative side, the 1-loop calculation of the optimal doping fraction is in good agreement
with experimental results, as is our estimate of Tc. It is beyond the scope of this paper to present
additional detailed comparisons with the many impressive experimental results obtained over
the past two decades.
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Appendix A. Derivation of the momentum-dependent gap equation

In order to consistently incorporate higher order scattering, one can start with the so-called
1PI effective action Seff with the usual definition as the sum of 1-particle irreducible vertices
[5]. Throughout this section we work in Euclidean space. Since we are only interested in gaps
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that depend on the spatial component k of p = (ω, k), one should start with a 4-particle term
of the form

Seff|4-particle =
∫

dt

∫
ddx1 · s ddx4 �(4)(x1, x2, x3, x4)χ

−
↑ (x1)χ

−
↓ (x2)χ

+
↓ (x3)χ

+
↑ (x4), (A.1)

where all xi are at the same time: xi = (t, xi ). However, in order to streamline the derivation,
and also to more clearly express the result in terms of the usual momentum-space Green
functions, we treat space and time on equal footing and make the above reduction at the end.
The 4-particle term in our N = 2 model then has the form

Seff|4-particle =
∫

dDx1 · · · dDx4 �(4)(x1, x2, x3, x4)χ
−
↑ (x1)χ

−
↓ (x2)χ

+
↓ (x3)χ

+
↑ (x4)

=
∫

(dp1) · · · (dp4)�
(4)(p1, p2, p3, p4)χ

−
↑ (p1)χ

−
↓ (p2)χ

+
↓ (p3)χ

+
↑ (p4),

where (dp) ≡ dDp/(2π)D and χ(p) is the Fourier transform of χ(x). The function �(4) is a
4-point correlation function of χ ’s and by translational invariance has an overall δ-function

�(4)(p1, p2, p3, p4) = (2π)Dδ(D)(p1 + p2 + p3 + p4)(−8π2g + · · ·), (A.2)

where we have included the tree-level contribution and ‘· · ·’ represents loop corrections.
To derive the gap equation we follow the auxiliary field method of section 8 and introduce

momentum dependence in the manner described by Weinberg [4, 5]. Introduce pair fields
q±(p1, p2) and the auxiliary action

Saux =
∫

(dp1) · · · (dp4)�
(4)(p1, p2, p3, p4)

[−q+(p1, p2)q
−(p3, p4)

+ q−(p1, p2)χ
+
↑ (p3)χ

+
↓ (p4) + q+(p1, p2)χ

−
↓ (p3)χ

−
↑ (p4)

]
. (A.3)

The equations of motion for q give q− = χ−
↓ χ−

↑ and q+ = χ+
↑χ+

↓ and substituting back into
Saux recovers the correct quartic interaction of χ ’s.

We now specialize to Cooper pairs with total momentum zero:

q(p1, p2) = (2π)Dδ(D)(p1 + p2)q(p1). (A.4)

Define the kernel G as follows:

�(4)(p1,−p1, p3, p4) = (2π)Dδ(D)(p3 + p4)G(p1, p3). (A.5)

Then the auxiliary action becomes

Saux =
∫

(dp)(dp′)G(p, p′)
[−V (D)q+(p)q−(p′) + q−(p)χ+

↑ (p′)χ+
↓ (−p′)

+ q+(p)χ−
↓ (p′)χ−

↑ (−p′)
]
, (A.6)

where V (D) = (2π)Dδ(D)(0) is the D-dimensional volume.
The free-field kinetic term is the following:

Sfree =
∫

(dp)
∑

α=↑,↓
χ−

α (p)(p2 + m2)χ+
α (−p). (A.7)

The Gaussian functional integral over the χ fields can now be performed to give an effective
potential Veff = Seff/V (D). To describe Veff in a compact form it is convenient to define

q̂±(p) =
∫

(dp′)G(p, p′)q±(p′). (A.8)

One then finds

Veff = −
∫

(dp)(dp′)G−1(p, p′)̂q+(p′)̂q−(p) − 1

2

∫
(dp) Tr log A(p), (A.9)
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where A(p) is of the same form as in equation (91) with q± → −q̂±(p) and s = 0. Above,
G−1 is the inverse of G as an integral operator, and not simply 1/G.

In order to understand how one recovers the constant gap equation, let us pass to position
space where

q(x1, x2) =
∫

(dp) eip·(x1−x2)q(p). (A.10)

For a constant kernel, it can be redefined to G(p, p′) = 1, and one sees that

q(x, x) =
∫

(dp)q(p) = q̂ (A.11)

thus a constant q̂(p) corresponds to a constant q = q(x, x) in position space. Thus, where
there is no time dependence in the gap, one can let p = (ω, k) and define

q̂(k) =
∫

(dk′)G(k, k′)q(k′), (A.12)

where now G(k, k′) is the same kernel but with the time Fourier transform disregarded. In
other words, G(k, k′) is simply G(p, p′) with p = (0, k) and p′ = (0, k′).

Finally, δqVeff = 0 gives the gap equation

q̂(k) = −
∫

dω ddk′

(2π)d+1
G(k, k′)

q̂(k′)
(ω2 + k′2)2 + q̂(k′)2

, (A.13)

where q̂ = q̂±. After relabeling q̂ → q this is equation (114).

Appendix B. Relevant aspects of lattice fermions

In this appendix we collect some known features of lattice fermion models that are referred to
in the paper. All are contained in the reviews [34, 35].

Let ri denote the positions of sites of a two-dimensional square lattice with lattice spacing
a. Nearest neighbors ri and rj are related by rj = ri + a with a ∈ {a1, . . . , a4}, where
a1 = −a3 = (a, 0), a2 = −a4 = (0, a). Introduce fermion operators cri ,α where α =↑,↓
represents spin and define the Hamiltonian

H = −t
∑
r,a,α

(
c†r,αcr+a,α

)
, (B.1)

where {
cr,α, c

†
r′,α′

} = δr,r′δα,α′ . (B.2)

The Hamiltonian is Hermitian due to
∑

a = ∑
−a.

Introduce the momentum space expansion

cr,α =
∑

k

eik·rck,α. (B.3)

Using
∑

r eik·r = δk,0, the Hamiltonian becomes

H =
∑
k,α

εkc
†
k,αck,α, (B.4)

where

εk = −2t (cos kxa + cos kya). (B.5)

Define the local spin operators:

S+
r = 1√

2
c
†
r↑cr↓, S−

r = 1√
2
c
†
r↓cr↑, Sz

r = 1
2

(
c
†
r↑cr↑ − c

†
r↓cr↓

)
. (B.6)
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The conserved spin SU(2) charges are �Q = ∑
r
�Sr and satisfy the SU(2) algebra with the

convention in equation (58).
The Hubbard interaction is essentially unique up to shifts of the chemical potential as a

consequence of the Fermi statistics:

Hint = U
∑

r

(
nr↑ − 1

2

)(
nr↓ − 1

2

)
, (B.7)

where nrα = c
†
rαcrα are local number operators. The interaction can also be written as a

spin–spin interaction since

�Sr · �Sr = − 3
2nr↑nr↓ + 3

4 (nr↑ + nr↓). (B.8)

In addition to the above spin SU(2) symmetry, there is another commuting SU(2)

symmetry so that the largest symmetry of the Hubbard model is SU(2) ⊗ SU(2) = SO(4)

[36]. The latter SU(2) is intrinsic to the lattice and does not obviously have a continuum limit.
At half-filling there is one fermion per site, which implies nr↑nr↓ = 0 and nr↑ + nr↓ = 1.

Thus at half-filling one sees from equation (B.8)

�Sr · �Sr = 3
4 . (B.9)

Equating the above with j (j + 1), j = 1/2 one sees that at half-filling the local spin operators
�S form the two-dimensional spin- 1

2 representation of SU(2). Away from half-filling the
constraint (�Sr)

2 = constant needs to be relaxed.
At large U and half-filling, the Hubbard model can be formulated as an effective spin- 1

2
Heisenberg model [7, 37]:

Heff = J
∑
〈i,j〉

(�Sri
· �Srj

− 1/4), (B.10)

where J = 4t2/U .
In the continuum limit an effective theory for fluctuations above the AF state is the

nonlinear O(3) sigma model [32]. One starts from a staggered configuration

�Sr = ±�nr + ��r, (B.11)

where ± is for even/odd sublattices. In the continuum limit the effective theory for the �n field
is second order in space and time derivatives with Lagrangian density

L = 1
2 (∂t �n · ∂t �n − �∇�n · �∇�n) + Ltop, (B.12)

where �n2 is constrained due to equation (B.9)

�n2 = constant. (B.13)

The topological term has the form Ltop ∼ �n · ∂�n × ∂�n. In 1d the topological term is known to
serve an important role in determining the low-energy fixed point [32]. In 2d the topological
term is not known to play an analogous role; in fact it is an RG irrelevant operator of dimension
7/2 and we ignore it.
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